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1. Introduction

The last five years have brought considerable advances in
the theory of the boundary-value problem of physical geodesy in the
formulation of Molodensky, which is the determination of the
physical earth's surface from gravity. These advances have been
accomplished mainly through the work of T. Krarup, L. HOormander
and F. Sansd.

The present report is devoted to a review of this work. Its
aim is to introduce the reader to the basic ideas and geodetically
important results, which are sometimes hidden between formidable
mathematical technicalities. We shall thus attempt what mathema-
ticians call a "heuristic exposition", for mathematical details
the reader will be referred to the original papers. The treat-
ment of the linear problem in gravity space in sec.8 is new.

The problem of Molodensky may be formulated briefly as
follows: given, at all points of the physical earth's surface S ,
the gravity potential W and the gravity vector g , to deter-
mine the surface S . The potential W can be determined by
leveling combined with gravity measurements; this gives the
potential up to an unknown constant which, however, can be found
indirectly by other methods, especially distance measurements.

The magnitude of the gravity vector g , which is gravity g , is
measured by gravimetry, and the diiection of g , which is the
plumb line, is obtained by astronomical measurements of latitude

¢ and longitude A . It is assumed that these measurements have
been corrected for luni-solar tidal effects and other temporal
variations, so that our problem is independent of time. We further
suppose that the effect of the atmosphere has been taken into
account by appropriate reduction. Hence, the space outside the
surface S <can be considered as empty.
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We thus assume that the earth is a rigid body which rotates
with constant and known angular velocity « around a fixed axis,
which passes through the earth's enter of mass. This center of
mass will be taken as the origin 0 of a cartesian coordinate
system, the X4 axis coinciding with the axis of rotation.
The gravitational potential V is a harmonic function

outside S . For large values of the radius vector

r=|xj = V&f # xg + x§ (1-1)
it has an expansion in spherical harmonics of the form
Y. (0,1} Y (8,1)
V(5)=E—M+ L2, (1-2)

r r

where G is the gravitational constant, M denotes the total
mass of the earth, and Yn(e,x) are Laplace surface harmonics,

8 (polar distance) and A (longitude) forming together with the
radius vector r a system of spherical coordinates related to
the cartesian coordinates x = (xl, Xy x3) by ,

Xy ®op sing cosx
X, = r sine sinx (1-3)
Xy = r cose

The condition that the coordinate origin 0 coincides
with the center of mass implies that the spherical harmonics of
first degree vanish identically:




Y, (6,0) = 0 , (1-4)

so that V must have the form

V(x) = E_M & el for r > = . (1-5)

The gravity potential W is then given by

W(x) = V(x) + 5’ (x? + %0 (1-6)

It will also be assumed that the surface S 1is a one-to-
one image of the sphere and that it is a smooth surface, being
differentiable as often as required.

It may be questioned whether Molodensky's problem thus
formulated is to-day geodetically relevant at all. On the one
hand, the prerequisites for Molodensky's problem, especially
continuous coverage of the whole earth's surface by gravity
measurements, are still far from being realized; on the other
hand, there are many more date of different kind, such as satellite
data, that transcend the frame of Molodensky's problem and must be
handled by data combination techniques such as least-squares
collocation.

To these questions we may answer as follows. From a
practical point of view, the integral formulas arising in the
solution of boundary-value problems are often computationally
more convenient than collocation and retain their importance if
gravity data are available to a sufficient extent, at least locally
(cf. Moritz,1975). From a theoretical point of view, the geodetic
boundary-value problem represents an especially interesting and
significant special case, whose importance for the conceptual

———————l



structure of geodesy, from the time of Clairaut to the present day

can hardly be overestimated (curiously enough, the theory was

always far ahead of the data available at the time). In fact, the
consecutive stages in the development of the boundary-value problem --
Clairaut, Stokes, Molodensky -- always served as measures of
perfection for geodetic theory and set new standards.

Even today Molodensky's problem is not yet completely
clarified from a mathematical point of view, with respect to
existence and uniqueness of the solution, in spite of the decisive
progress made in the last few years; it remains a challenge to
theoreticians.

Let us now try to get a first grasp of the mathematical
nature of Molodensky's problem.

The gravity vector g «can be expressed in terms of measured
gravity g and of astronomical latitude ¢ and Tongitude A as

{g coso cosA]

g o g CcoS® sinA i E (1-7)
' g sine®

In space the vector g and the potential W may be considered
functions of the rectangular coordinates:

g = g(xl, Xy x3) s W = W(xl, X5 x3) (1-8)
On the earth's surface S , they are functions of two surface
coordinates, for which we may take the astronomical coordinates

& and A

g =g(e,n) W= W(e,n) (1-9)
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the overbar denotes restriction of spatial functions to the surface

S , whereas underlining characterizes vectors (and later, matrices).
Now g may be expressed, in a certain sense, as a function

of S and W , symbolically

g = F(S,W) . (1-10)

This means that, given the surface S and the gravity potential
W on it, the gravity vector g on S 1is then uniquely determined
and can be computed.

In fact, this may be done as follows. Let S and W be
given. Compute the centrifugal potential on S (which can be done
since the surface S is supposed to be given and consequently the

coordinates x X of the surface points are known) and

X
12 2% 3
subtract it from W ; this gives the gravitational potential V
on S . From V on S we get the potential V outside S by
solving Dirichlet's boundary value problem, which has a unique ]

solution. Now

o

g = grad V + centrifugal force

(grad denoting the gradient) can be computed outside S and, by
the continuity of first derivatives, also on S , giving g
Thus g s, in fact, uniquely determined by S and W , so 3
that (1-10) holds. :
Suppose now that it were possible to solve (1-10) for S ‘

S = o(W,3) . (1-11)

This would express the earth's surface S in tarms of W and g ,
solving Molodensky's problem.




This is probably the conceptually simplest formulation of
Molodensky's problem. However, the transition from (1-10) to (1-11)
is mathematically extremely difficult. If S , W and g were
simple real numbers and F were an ordinary function (supposed
sufficiently smooth), then the solution of (1-10) for S would
be straightforward. The existence of such a solution is guaranteed
by the elementary implicit function theorem. ]

In fact, however, the "function" F in (1-10) is a rather
coniplicated nonlinear operator, and the existence of a solution
(1-11) is by no means obvious. There are implicit function theorems
for nonlinear operators (e.g. Dieudonné,1960;Loomis and Sternberg,
1968;Schwartz,1969;Sternberg,1969), but the conditions for their
application are not satisfied in the geodetic case. It was the
merit of HOrmander (1975) to have found, by a mathematical tour de

force, an implicit function theorem that is applicable to the

geodetic boundary-value problem.

To get some first insight into the matter, let us forget
all mathematical difficulties and proceed formally as if S , W ,
and g were simply real numbers and F were a simple functions.
Since W 1is given, it can be considered fixed once and for all,
so that (1-10) becomes a function of S only:

g = f(s) . (1-12)

To further simplify the notation, we write g instead of E E
obtaining

g = £(5) . (1-13)
Thus S is simply given by the inverse function

§ =1 e » (1-14)
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so that the implicit function problem reduces to an inverse function
problem.

To practically find this inverse function, that is, to ‘
solve (1-13) for S , we may apply the usual procedure for solving ]
nonlinear equations, namely linearization.

Let us introduce an approximation So to the earth's sur-
face S and let 9, be the corresponding gravity vector, related
to So by (1-13):

g, = fls3 . (1-15)

o

Write, formally,

2 (1-16)

and apply Taylor's theorem to (1-13):

g, * A8 = F(5. + 45) =

FIS Fw 105 188

omitting quadratic and higher terms. In view of (1-15) this becomes
89 = T'(5 )as . {(1-17)

The formal solution of this equation is

8S = [f'(so)] -lAg : (1-18)

Let us link these ideas with the conventional approach to




Molodensky's problem. Here So is the telluroid and 9, is normal
gravity on it; Ag 1is the usual gravity anomaly referred to the
earth's surface (it is here possible to disregard the original
vector character of aAg and regard it as a scalar quantity) and
AS is represented by the height anomaly ¢ <characterizing the
separation between earth's surface S and telluroid S, - Thus
(1-18) becomes

gl = Mg (1-19)

where M = [f'(so)j 1 denotes the linear Molodensky operator
computing ¢z from aAg ; practically one uses Stokes' formula
with suitable correctiaons.

Higher approximations may be obtained by Newton's method.
Combining (1-15), (1-16) and (1-18) we get

- =L
s, =8, ¢ fes] 096 (1-20)

where we have written S1 instead of S to indicate that by this
equation we get better approximation S1 rather than the true
value S itself. By repeated application of this formula we get
successive better approximations S S

29 3’

w
"

o % By [f'(Sl)]-l [g - f(Sl)]
A

ks | B
=8, 4 1Sy Lg - £(5,) | (1-21)

w
n

L -




T v

Graphically Newton's procedure is illustrated by Fig. 1.
S The unknown abscissa S for the given ordinate g is approached

Figure 1

Newton's Method

by following the broken line with arrows.

The convergence of Newton's procedure is known to be very
good, namely quadratic: there is a constant K independent of n
such that

[ e S R IEL - Rl (1-22)
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The following sections 2 to 4 will deal with a detailed
study of the linearized problem. The remaining sections will be
devoted to two approaches to the nonlinear problem. Hormander's
appraoch is logically straightforward , using an iterative inverse
functicn technique basically similar to Newton's method but mathe-
matically extremely involved. The second approach, due to Sansd,
first transforms the original free boundacry value problem (the
boundary S is "free", that is, unknown) into a fixed boundary-
value problem by means of a Legendre transformation, thereby
essentially reducing the mathematical complexity.

2. Krarup's Linearization

In the usual linearization of Molodensky's problem, the
telluroid is introduced as the surface formed by the set of points
Q such that Q 1lies on the same ellipsoidal normal as the
corresponding point P at the earth's surface and that the normal
potential U at Q is equal to the actual potential W at P
cf. (Heiskanen and Moritz,1967,p.292).

In his third Tetter on Molodensky's problem that was
circulated among the members of the IAG Study Group on Mathematical
Methods in Physical Geodesy but unfortunately never published,
Krarup (1973) gave a more general formulation of the linearization
which is also suitable for studying the nonlinear prob]em.”

In this mcre general formulation, the telluroid 7§ s
now an arbitrary given surface close to the earth's surface S
the points Q of which are in some one-to-one correspondence
with the points P of S  cf.Fig. 2. We also introduce a normal
potential U which constitutes an analytic approximation to the
actual potential W ;3 U s usually taken as the gravity
potential of an equipotential ellipsoid.

1)
It should be mentioned that the first rigorous formulation and
lTinearization of Molodensky's problem has been given by Meiss]
(1971).
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Figure 2

The telluroid ) as an approximation
to the earth's surface S
Let
y = grad U (2-1)
denote the normal gravity vector, in the same way as
g = grad W (2-2)

expresses the actual gravity vector.

Since )} and U are given, we can compute U and y at
Q ., that is, UQ and Xg 1 As potential W and gravity g are
supposed to be given on S (in the notation of Section 1, they are
W and g ), we know it at every point P on S , that is, we

know W, and g, . We, therefore, can compute the differences
AW = Ny - UQ " (2-3)
A8 = gp - Xy (2-4)
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] called potential anomaly and (vectorial) gravity anomaly, respectively.
By appropriate definitions of the telluroid it is possible

to make one of the two quantities (2-3) and (2-4) equal to zero. In

the usual definition of the tellurcid mentioned at the beginning

of this section, we have UQ = wp and therefore

AW = 0 . (2-5)

In this definition, points P and Q are supposed to lie on the
same ellipsoidal normal. Since the ellipsoidal normal through P
is, strictly speaking, not known, it would be theoretically more
correct to define Q by the three conditions

Uu. = W s b, = @ s A, ®= A . (2-6)

Here ¢ and X are defined by

Y CO0S¢ cosxj
i gt cos¢ sina (2-7)
Iy sing¢
L J
in complete analogy to (1-7); thus the normal latitude ¢ and
longitude ) determine the direction of the normal gravity vector
Y » in the same way as ¢ and A define the direction of g
The surface formed by the points Q in this manner has been called
“normal surface" in (Moritz,1964). Krarup (1973) calls it "Marussi
telluroid" because the three "Marussi coordinates" potential,
latitude and longitude are identified.
In this way, the potential anomaly AW can be made zero.
Somewhat surprising at first sight is that also the gravity
anomaly aAg can be made to vanish. This requires defining the
points Q of the telluroid by




(2-8)

AP

Expressing this vector condition in terms of magnitude and direction
of the vectors involved, we get three conditions

YQ=gP s
¢Q = Ry » (2-9)
AQ=AP ’

which again completely determine Q . Since g, ¢, A may be called

"gravimetric coordinates", the corresponding locus of points Q
has been called by Krarup the "gravimetric telluroid"; for it, in
fact,

A= 0 . (2-10)

After these possible specializations, let us return to the
general case in which both AW and Ag are nonzero. As usual,
we define the disturbing potential T by

T an -, (2-11)

W and U referring to the same point (this distinguishes T from
the potential anomaly AW , in which W and U refer to different

points!).
On substituting

N, =U_+T (2-12)

we get from (2-3) and (2-4)




T

Let us now preceed with
¢ = vector QP

(see Fig. 2) and systematically
and higher order in ¢ . It is
quantities such as T and ag
as ¢ .« So also Tz, g, ete.
be neglected.

14

(2-13)

(2-14)
the linearization. We put

(2-15)
neglect all quantities of second
well known and easy to see that

have the same order of magnitude
are quantities of second order to

By a Taylor expansion restricted to linear terms we get

U, = UQ + grad U © ¢ =

where the dot denotes the inner

UQ L R R (2-16)

product of two vectors. Let us

proceed in the same way with the normal gravity vector:

Ip = 2y T WPO ¥ “ £

(2-17)

What is grad y ? To see this, let us write this equation in index

notation, using the summation convention (summation over an index

occurring twice):

where

(2-18)




T i i
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2
o ol . % "
715 R o R T (ax.) T T (2-19)
3 3 i S

=
i

Hence grad y is nothing else than the matrix

i j 3%y
M= ny] - {a_x*'a'x_JJ (o=l

formed by the second derivatives of the normal potential U ; in
other words, it is the second-order normal gradient tensor. There-

fore, we may write (2-17) as

XQ i W Mz . (2-21)
It is clear that y in (2-16) and M in (2-21) refer to point
0 .

Let us similarly expand TP

Te @ TQ + grad 1T - 3

Now, however, grad T is already small of first order, so that
grad T - ¢ is of second order anc, therefore, negligible. Thus,
consistent with our linear approximation, we simply have

: AN o S (2-22)

The insertion of (2-16), (2-21), and (2-22) into (2-13)
and (2-14) now gives




e
]

&
+

lz
"

Furthermore,

9p - Xp = (grad W), - (grad U)

for the same r

T+ y'g =AW , (2-25)
grad T + Mg = ag , (2-26)
in which T and grad T refer to Q , as well as y and M . We
have used the matrix notation gTE for the inner product a-b ,

the transpose
These
ments. Let us

i=n

and substitute

16

AW, (2-23)

[Ea
1l

by . (2-24)

n

grad (W - U)p

(grad T)P

dT :
(gra )Q

eason as (2-22). We thus finally get

of a being denoted by g?

two equations will be basic for our further develop-
solve (2-26) for t , assuming M invertible,

Y(ag - grad T) , (2-27)

into (2<25):

T + lTﬂ'l(Ag - grad T) = AW
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or

T - y"™M 'grad T = aW - y"™M 1ag . (2-28)
On putting

_ -1

o= =%y (2-29)

we get
T T
T+ mgrad T = AW + m Ag (2-30)

This equation, which holds on the telluroid ) , consti-
tutes the fundamental boundary condition for the linearized

Molodensky problem. It is a generalization of the "fundamental

equation of physical geodesy" (Heiskanen and Moritz,1967,p.86),

just as (2-25) is a generalization of Bruns' formula (ibid.,p.85).
Various Forms of the Boundary Condition. - Let us intro-

duce new coordinates 9, by

9, = q,(x;s x,5 x3)

q2 = q2(x1' x2’ X3) (2-31)
A3 = 93(x;s X5, X3)
or briefly

and let us assume that the inverse transformation

X, = xj(qk) ‘ (2-33)

(S




bl

also exists. More specifically, we shall select q; to be the
cartesian components of the normal gravity vector:

q, = ¥y, = : (2-34)

It is clear that one-to-one relations (2-32) and (2-33) exist, at
lTeast in the spatial vicinity of the earth's surface, so that the
quantities (2-34) may indeed be used as spatial curvilinear coor-
dinates.

The matrix M introduced by (2-19) and (2-20) may be
written as

e
" =[axj : (2-35)

it is, therefore, nothing else than the Jacobian matrix of the

transformation (2-32). It is well known that the inverse matrix
ﬂ’l is then simply the Jacobian matrix of the inverse trans-
formation (2-33):

-1 g
Bl (2-36)

This may also be shown directly: we have

ayi axj ayi

(2-37)

axj Byk Byk
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by the chain rule of differential calculus; furthermore

Ay, i
= = = -
i (2-38)
OF SR TS R

Therefore, (2-37) becomes

ayi X,

L ST ; (2-39)
ij ayk ik

which, by (2-35) and (2-36), is nothing but the equation

m~t oo 1 (2-40)
in index notation, I denoting the unit matrix.

Now the vector m , defined by (2-29), becomes in index
notation:

N L T (2-41)

and we further have

ngrad T = m55

i
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R | e (2-42)

Foaiy Sl (2-43)

where we have used the abbreviation

f= AW+ mag . (2-44)

An even greater simplification is achieved by introducing

"quasi-spherical coordinates" o, ¢, X Dby

o 1
Yy = e =y COSH CUSK 4
o)
flagmy ,
Y, = - —3 cos¢ simx (2-45)
o]
. 1 .
‘Y3-‘—2-S'In¢
P

Here ¢ and X are normal latitude and longitude as before,
because the vector Yy is nothing else than normal gravity. The
coordinate o is taken as positive. If the reference ellipsoid
becomes a sphere, then p becomes proportional to the radius
vector, as we shall see below, so that o, ¢, » become spherical
coordinates; hence the name, quasi-spherical coordinates.

1
|
|
'
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Now
3y,
3T T il
LS R b -4

again by the chain rule;

. ¥
3_9_ = 03 cC0S¢ COSA = B‘ Yl

and, generally,

Byi

9p

“ =
5 ¥

i

by (2-45). Thus (2-46) becomes

dib e oT x

and (2-43) reduces to
o2l & 27 = 2f (2-48)

It should be pointed that (2-48), in spite of its simplicity,
is rigorously equivalent to (2-30); there is no further approximation
involved.

What is the geometrical meaning of the derivative 3T/3p ?
According to the definition of a partial derivative, 23/3p means
differentiation with respect to one coordinate o , the two other
coordinates ¢, A being held constant. This means differentiation
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along a line
¢ = const., A = const. (2-49)
Such Tines are called isozenithals (with respect to the normal

gravity field). The reason for this name is that (¢,A) may be
considered as the coordinates of the (ellipsoidal) zenith on the

celestial sphere. The isozenithals may also be looked upon as the
lines along which the normal gravity vector are all parallel,
having the same direction (2-49). If the plumb Tines were straight

plumb lines

“isozenithal

ellipsoid

Figure 3

Plumb T1ines and an isozenithal




lines, then the isozenithals would coincide with the plumb lines;
as the normal plumb Tine curvature is quite small, isozenithals
and plumb lines are not very different.

In view of the fundamental importance of our boundary
condition, let us approach it from still another angle. Let <t de-
note the arc length of the isozenithal line, measured, e.g., from
the ellipsoid positive upwards (so that it represents the height
above the ellipsoid , measured along the isozenithal). Then 3/3t
represents a derivative along the isozenithal, in the same way as
3/3p . Therefore, these two derivatives, having the same direction,
can only differ in scale, that is, they must be proportional:

Iw

a = -
==t (2-50)

Q

p

To find the proportionality factor C we apply this equation to

& <. gk (2-51)

The right-hand side can be easily evaluated, since by (2-45)

2 |

Y = YiYi 2 —Z ’
o]
= 15 s (2-52)
o)
so that

o WO SRR . o .
.- 3 - 5 (2-53)
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and
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and the boundary condition (2-48) takes the form

gt . 3
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The right-hand side may be transformed as follows.

we have

f = aW + mTag

Let us have a closer look at the vector m
To this effect, let

x = x(r)
be the equation of the isozenithal. Then the vector

_ dx
£° %

(2-54)

(2-55)

(2-56)

By (2-44)

(2-57)

(2-58)

(2-59)

will be the unit tangent vector of this curve (it will be a unit

vector since 1t 1is the arc length). Then
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@
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1
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Al=

efgrad T = = (2-60)

by the chain rule. Hence there follows from (2-42), (2-47), (2-55)
and (2-60):

P oo L
mgrad T = v,

2 <

'Zpap
S il)‘lil

9T JT

ol g Anyea e -
= (Y aT) e grad T . (2-61)

Since the vector grad T can have any direction, there must be
T o . (1 ayy-1,T .

Hence the vector m s tangent to the isozenithal; since =+t s
positive upwards, the negative sign implies that m is directed
downwards.

Thus

Tyq = (1 3xy-1,T "

moaAg = (Y =) eag - (2-63)
Now

ETAS. = - Ag' (2-64)
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is nothing else than the component of the gravity vector 4Ag in the
downward direction of the isozenithal. Since this direction is very
nearly vertical, ag' 1is almost equal to the usual gravity anomaly
A9 1in the sense of Molodensky.

In view of (2-63) and (2-64), eq. (2-57) becomes

ool v ($ ) g, (2-65)

and (2-56) may be written as

al _ 1
T ¥

(2-66)

K
—‘
n
1
>
(e}
]
< | =
oy
>
=

T

This form of the basic boundary condition is rigorously
equivalent to the preceding forms (2-30), (2-43) and (2-48). Though
it looks less simple, it is very important because it allows a
comparison with the form in which the boundary condition for
Molodensky's problem was usually presented earlier. Take, for
instance, eq. (8-24b) of (Heiskanen and Moritz, 1967,p.300):

N L et ¢
d-laxr..yg . (2-67)

Here the derivative 3/3h is taken along the normal plumb Tline.
This equation involves certain approximations (cf. ibid.,p.85),
which are practically permissible but theoretically not rigorous.

It was the merit of T.Krarup to have shown that (2-67) becomes
theoretically exact if the direction of the normal plumb line is
replaced by the direction of the normal isozenithal (the second term
on the right-hand side of (2-66) vanishes if the telluroid is
defined by UQ B HP as usual).




The boundary condition (2-66) is valid on the telluroid | ,
which is a known surface. The problem is to solve Laplace's equation,
AT = 0 , outside ) with the boundary condition (2-66). Since the
isozenithal is, in general, not normal to the surface ) , we have
an oblique derivative problem. Such problems are considerably more

difficult than boundary-value problems involving normal derivatives,
such as Stokes' problem.
Spherical Approximation. - If the reference ellipsoid is a

nonrotating sphere, then

Y T =5 ' (2-68)

where G is the gravitational constant, ™M the total mass, and r
the radius vector from the center of the sphere to the point under
consideration. The normal gravity vector is then given by

Bl 1 (2-69)
where
COs$ COSA |
e =] cos¢ sina (2-70)
sing

denotes the unit vector in the direction of the radius vector, ¢
and X being geocentric latitude and longitude. The quantities r,
¢s A are the usual spherical coordinates.

The cartesian components of y may thus be written
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s GM
Y, = - =5 €0s¢ cosr ,
r
Y, = = Eﬁ cos¢ sinx (2-71)
2 2
GM .
Y, = = — sin¢
3 Y‘2

The comparison with (2-45) shows that now
o = r//GM (2-72)

so that p is r apart from a scale factor.

For the non-rotating sphere, the plumb lines, as well as the

isozenithals, coincide with the spherical radii. Thus, now

SR 5
e Caglbe

and

1 2
%% - 2% = -z (2-74)

<=

by (2-53). Hence (2-66) reduces to

2L 3

. Z .
- T==ag+< oW , (2-75)

s

equivalent to (2-48) but with the right-hand side given explicitly.
The boundary-value problem expressed by Laplace's equation

AT = 0 (2-76)




and the boundary condition (2-75) 1in spherical coordinates has been

called by Krarup the simple Molodensky problem; it is the one
considered in virtually all practical solutions of the geodetic

boundary value problem.

The reason is that, although the reference ellipsoid is not
exactly a sphere, its flattening is very small, about 0.3 %, so that
on tolerating an error of this order of magnitude in equations
relating quantities of the anomalous gravity field, for instance,
in the boundary condition, we can formally use spherical boundary
condition even in the geodetic case of a reference ellipsoid. This
is the so-called spherical approximation; for a more detailed

explanation cf. (Heiskanen and Moritz, 1967,pp.87-88).

As Krarup has pointed out, the spherical approximation may
be interpreted geometrically as the mapping of the actual point P
into an auxiliary point P' by relating the quasi-spherical co-
ordinates p, ¢, A of P to the spherical coordinates r', ¢', 2'
of P' by

ptom oG, ot e . AT w R (2-77)

This mapping would even be rigorous if also the Laplace equation were
transformed appropriately; the approximation amounts to the use of
the untransformed Laplace equation. The reader may find it interesting
to compare this with the ideas to be presented in sec. 8.

As we have already said, the simple boundary condition (2-75)
has been used in almost all practical solutions of the geodetic
boundary value problem. This is already true for Stokes problem, the

gravimetric determination of the geoid. In fact, for the reference
ellipsoid itself, which is, by the spherical approximation, mapped
onto the sphere r = R , we have with aW =0

3T % ="
P Ao
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which is the boundary condition for Stokes' problem (Heiskanen and
Moritz,1967,p.88). The solution is given by the well-known Stokes
integral.

But also almost all practical solutions of Molodensky's
problem presented and applied so far are based on the spherical
approximation, beginning with (Molodenskii et al.,1962,pp.118-124):
solutions by Arnold, Brovar, Marych, Moritz, Pellinen and others.
For a review of them see (Moritz,1966 and 1969). The ellipticity
has been taken into account in work by Zagrebin, Molodensky,
Bjerhammar and Koch; Lelgemann has shown that the effect of
ellipticity on geoidal heights and deflections of the vertical is,
in fact, very small.

Let us, finally, mention that there are two senses in which
“Tinear" and "nonlinear" are used in connection with Molodensky's
problem. In theoretical work, such as the present report, "linear-
ization" is with respect to the disturbing potential T or the

height anomaly ¢ ; the neglected quantities are on the order of

60
®)? = 5" - 1010

which is certainly always negligible, the present accuracy being
higher than 10~° only in rare instances.

Hence, for practical applications, the "linear" Molodensky
problem in the present sense is practically always sufficient. Higher
approximations and their convergence are, however, of basic import-
ance for a rigorous mathematical investigation of the existence
and the uniqueness of a solution to Molodensky's problem,.

The other sense of "linear" and "nonlinear" is used in more
practically oriented work, with respect to terrain inclination

tan g , because the practical solutions to Molodensky's problem
(it is usually the "simple" problem mentioned above) are based on
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a series expansion with respect to tan 8 . (It is in this sense
that “linear" and “nonlinear" are used in (Moritz,1966 and 1969).)
Since tan B may reach rather large values, "linear solutions"

in the second sense may be no longer adequate in mountainous areas.

3. Hormander's Linearization

As a preparation to his fundamental study of the nonlinear
Molodensky problem, Hormander (1975) first transcribes Krarup's
linearization process into modern symbolic notation.

The purpose of this notation is to exploit, as much as
possible, the analogy between linear operators and ordinary linear
functions, between nonlinear operators and ordinary nonlinear
functions, etc. In this way it is possible, for instance, to develop
differential calculus in a unified way equally valid for functions
of one variable, for functions in n-dimensional space and for
functions in a Hilbert or Banach space (which are nothing else
than Tinear and nonlinear operators). One can also give implicit
and inverse function theorems that are equally valid for functions
of one or several variables and for nonlinear operators. This explains
the importance of such a modern notation for the geodetic boundary-
value problem.

The reader will find presentations of this "modern analysis"
in books such as (Dieudonn&,1960) and (Loomis and Sternberg,1968),
the first being very clear but rather abstract, the second more
intuitive and accessible.

In this notation, vectors and functions are not distinguished
by notation from ordinary numbers. Vectors will be written simply
a or b instead of a, b (or of a,, b, in indices notation);
functions are denoted simply by f or g instead of f(x) or
g(u,v) . Thus structural similarities between numbers, vectors

% —



and functions are stressed, but it must be specified at each instance
what these symbols really denote.

The following standard mathematical notations will also be

used:

R .. Tline of real numbers x , - o<x<o

R*... three-dimensional Euclidean space.

We also denote by o the unit sphere in R3 (we do not
use the standard notation, 52 , to avoid confusion with the earth's

surface S ). There is

2 2 2

3
o = LXE6R" 3 % # Xy ¥ X = 1} (3-1)
which means that the unit sphere is the set of all points of R’
for which x> + x2 + x2 = 1 holds.

1 2 3
The potential W 1dis a function

R =R ., (3-2)

which means that the function N(xl, Xy, X3) associates to each
point (xl, Xy x3) of R3 a number, namely the value of the
gravity potential W at this point, and this number is an element 1
of R . In this sense, the function W does indeed map R’ into
R, mapping into R being understood as associating a numerical
value (a real number).
The vector (x;, X, x3) will be denoted by x , so that
we may also write

W= W(x)

= V(x) + %wz(xf + x;) s (3-3)
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where V is the gravitational potential and the last term the
potential of centrifugal force, w being the angular velocity of
the earth's rotation.

The gravity vector g (no underlining!) is the gradient

g =W -, (3-4)

where the prime denotes differentiation; since x means (xl, Xy
x3) , it is quite natural that W designs the gradient:

oW oW oW
W' = . 5 = grad W . (3-5)
l'ax1 X, X, }

How can the physical earth's surface S be defined in the
modern way? It is a mapping

$ 1o+ R* (3-6)
What does this mean? Nothing else than the usual parametric re-

resentation of S in terms of the parameters ¢ (astronomical
latitude ) and A (astronomical longitude):

Ny = Sl(¢,A) ’
X, = S,(0,4) (3-7)
% =

3 = S3(e,0)

where S S are certain functions of ¢ and A , or briefly

1’

x = S(0,A) . (3-8)
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In fact, ¢ and A define a point on the unit sphere o (as we
know well from spherical astronomy!), and Xis X55 X5 determine
a point in R3 . We are purposely using the same symbol S for the
surface and its equation (3-7) or (3-8); the usefulness of this
notation will be seen later.

If the functions (3-7) are differentiable ( as will be
assumed), then the mapping (3-6) will be differentiable: the surface

S 1is a "differentiable embedding" of the unit sphere in R>

On putting

¢ = Uy K= U (3-9)
we can write (3-8) in the form

x = S(u;s uy) (3-10)
or still more briefly

X = Stu). (3-11)
where

u = (ul, u2) o Lo.R) - (3-12)

In sec. 1 we have denoted the gravity potential of S (in
modern terminology, the restriction of W to S ) by W
Clearly, W s a mapping

¥so+R . (3-13)

which simply means that W , as a function defined on a surface, is

a (real-valued) function of the two surface parameters ¢ and A

i
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defining a point on the unit sphere o .
In the same way, the restriction g of the gravity vector
g to S 1is a function, or mapping,

Fie R (3-14)

(R® because of the three components of g ).
How can we relate the surface restrictions W and g to
their spatial counterparts W and g ? In usual notation we have

W(e,0) = W(S (0,0}, S,(e,0), Sy(2,0)) : (3-15)

This means that this restriction to F is obtained by substituting
the surface equation (3-7) into the spatial function W(x;, X2, X3).
More briefly this is written

W= W(S(u)) . (3-16)
It is thus a composite function of u , that is, of ¢ and A

The modern notation for a composite function or "function
of a function"

fe(x)) (3-17a)

is
fos(x) or fos (3-17b) é

(read "o" as "circle" or "composed by"), so that (3-16) may be
written :

W= WoS(u) (3-18)

|
|

"ﬁm"”mHHmﬁﬂﬁﬂ=-ﬂﬂ-------.--..--.-ﬂ----ﬂ.-.-.---..h"
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or briefly

W= WS . (3-19)

In fact, S 1is a mapping o -+ B, by (3-6), and W is a mapping
R3 > R , by (3-2), so that the composition of the two mappings
(read the right-hand side of (3-19) from the right to the left!) is
a mapping o » R , as it should be by (3-13).

Now it is clear that similarly

J = goS = WS (3-20)

(b, 3-4). In other terms, restriction to the surface S is
equivalent to composition by the functional symbol S . This shows
the usefulness of the present notation, using S in both meanings.
Linearization.- To proceed with the linearization, we consider
S, W, g, W and g as smooth (that is, sufficiently often differ-
entiable) functions of a parameter 6 . Let o = 0 correspond to
the normal potential and to the telluroid, and 6 = 1 to the
actual potential and to the physical earth's surface.
In other terms, let

x = S(use) (3-21)

denote a set of surfaces which depend smoothly on the parameter o6 ,
0 <6< 1 . The 1Timiting surfaces of this set are:

x
n

S(u3;0) ... telluroid § ,

(3-22)

x
n

S(u3;l) ... earth's surface S

for 0 < 6 < 1 we get intermediate surfaces.
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Similarly, let
W= W(x30) (3-23)

denote a set of gravity potential functions. The 1imiting functions
of this set are:

=
1]

W(x30) ... normal potential U ; (3-24)

=
"

W(x3;1) ... actual potential W
Finally, let
W = W(use) (3-25)
denote the restriction of W(x3;e) to the surface S(u;9)
W(use) = W(S(us8)se) (3-26)
The 1imiting functions in this case are
W= Wu;0) ,
which denotes the normal gravity potential U on the telluroid, and
W= Wu;l) ,
which denotes the actual gravity potential W on the physical
earth's surface.

Similarly we proceed with the gravity vector

g = g(use) (3-27)

— — ‘




in this case

g(us0)

b, ke

denotes the normal gravity vector y on the telluroid and

g(usl)
denotes the actual gravity vector g on the earth's surface.

The differentiation with respect to 6 will be denoted by
a dot:

2 Laae §
F=a . (3-28)

To establish the relation to the preceding sections we note
that AS 1in sec.l corresponds to

AS S(us3l) - S(u;30)

SA6

according to Taylor's theorem. However,

AR = § -0« ] (3-29)
so that we get

AS =S = . (3-30)
In other words, S is nothing else than AS as used in sec.l; it

also equals the vector g given by (2-15) since for fixed u ,
S(u3;1l) represents, by (3-21), the position vector x of point P ,
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and S(u3;0) that of Q (Fig.2).
Similarly we get for the (vector) gravity anomaly

89 = 9 earth's surface ~ L telluroid

g(u3l) - g(us0)

gne

or

29 =9 (3-31)

so that our former Ag 1is nothing else than g in the present
notation.

Thus, linearization is now equivalent to differentiation
with respect to the parameter ©

Let us first differentiate W as given by (3-26):

W(use) = W(S(use)se) (3-32)
obtained by substituting the surface equation

x = S(uje) (3-33)
into the spatial expression

W= W(x;0) . (3-34)
Since © enters into the right-hand side of (3-32) in two ways,

directly and also indirectly through S(u3e) , we must apply the
chain rule:

I ——




W(use) = W(S(u30)30) +

+ <grad W(S(use);e) , §(u;e)> . (3-35)

What does this mean? The first term on the right-hand side denotes
the derivative, with respect to o , of the function W(x;8) ,
disregarding the dependence of x = S(u3;e) on 6 . The second
term takes into account precisely this latter dependence. We thus
have to differentiate W with respect to x , getting

W' = grad W (3-36)
and then x = S(u3;e) with respect to 6 , obtaining
X = S(use) . (3-37)

Now both grad W and (3-37) are vectors in R3 , and < « » 13 %o
denote the inner product of two such vectors:

= +
<a,b> a1b1 + a2b2 a3b3

= aibi (3-38)

in index notation. In fact, the last term in (3-35) might also be
written in the more familiar index notation

T AR .
axg 51 % ax; 58 S

which expresses the usual chain rule.
After having clarified the meaning of (3-35), we omit all
arguments but are careful to denote restriction to the surface S




ﬁos + <W'oS, S>
WoS + <goS, S>
WoS + <g, $>

In an analogous manner we get

T = §oS + <g'eS, §»

What does g' mean? We have

g =W = grad W = %%—] > (3-42)
i

2
V= "o_ AW -
g' = W -[—-—axiaxj] ; (3-43)

which is nothing else than the second-order gradient tensor. For
® = 0, W reduces to the normal potential U , so that then g'
nothing else than the matrix M given by (2-19), and g'oS s
this matrix M taken at the surface of the telluroid. Note that
S here denotes S(u;e) ; that is, any surface between the telluroid
(6 = 0) and the earth's surface (6 = 1) , including these two
surfaces.

We must now find out the meaning of W and ﬁ . Using
(3-29) we have

W= Wae 2 W(x; 1) - W(x30)

=w- =T’




and WoS means the disturbing potential T at the surface of the

telluroid.
On the other hand, W means something different. We have

W= Wae = W(u;l) - W(u30)

which is the difference between the actual potential W at the
earth's surface and the normal potential U at the telluroid, in
other words, using the notation of sec.2, the difference wP - UQ -
which by (2-3) is AW . Thus

W= aW . (3-45)

We finally have

gae = g(x;1) -g(x,0)

[Te]
n

grad W - grad U = grad T . (3-46)

Let us now collect equations (3-30), (3-31), (3-44), (3-45)

and (3-46): 1
S=7¢ ,
N=T ,
g =grad T (3-47) ;
We=aw ,
g = ag

These equations form, so to speak, part of a dictionary
that serves to translate formulas from the "old" into the new




notation and vice versa.

We thus wee that (3-40) is the "“translation" of (2-25),
whereas (3-41) corresponds to (2-26).

We now proceed as in sec.2. We solve (3-41) for S

. ¢ _1 L )

S = (g'es) "(g - goS) , (3-48)
assuming that the "Marussi condition",

det(g'oS) # 0
is satisfied, that is, that the 3x3 matrix

M = g'oS (3-49)
is invertible. This is always the case for 6 =0 , for the normal
ellipsoidal potential U

The substitution of (3-48) into (3-40) then gives the
desired boundary condition. We first obtain

W = No§ + <goS.(9'08)"1(§ ~ §oS)> . (3-50)

Generally we have for 3-vectors a and b and for a 3x3 symmetric
matrix C

aTCb = bTCa =

<a,Cb>

<b,Ca> = <Ca,b> , (3-51)

using matrix notation in between and taking into account the
symmetry of the matrix C and also the symmetry of the inner
product < , >
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By means of this formula, eq. (3-50) becomes

W= oS +<(g'05) 1g05,5-goS> . (3-52)

We now put

m=-(g")"g (3-53)

This 3-vector m has already been used in sec.2; cf. (2-29); it is
directed along the isozenithal. Thus (3-52) becomes

W= s - <moS,§-§oS>

Wb = <maS, 0 + <mygEas (3-54)
as oS means restriction to S , there is
<moS$,goS> = <m,§>o$ . (3-55)

On rearranging we get

(W + <m,g>)oS = W + <moS,g> . (3-56)
Let us differentiate

g(x3;6) = grad W(x;e)
| with respect to o . Since the differentiations with respect to
% 8 and to x (gradient) are independent and can be interchanged, we

get

g =grad W . (3-57)

|
|
|
|
|
F
|
|




Thus (3-56) becomes

(W + <m,grad W>)oS = W + <moS,3> . (3-58)

This condition differs from (2-30) only by the notation; cf., in
particular, the "dictionary" (3-47).

It is appropriate to take the centrifugal potential in
space as independent of the parameter 6 . Then only the purely
gravitational potential V depends on 6 , and W depends on &
only through V . Thus

W=V (3-59)

and (3-58) takes the final form

(V + <m,grad VoS = W + <moS,g> . (3-60)

This is the fundamental boundary condition in the form given to it
by Hormander. .

The form (3-60) clearly brings out the fact that T =V =
is a harmonic function, satisfying Laplace's equation

AW =0 (3-61)

This is less obvious in (3-58) since V but not W 1is a harmonic
function.

It is very interesting to compare the equivalent forms
(2-30) and (3-60). There is no doubt that (2-30), its notations
and the operations leading to it are much more familiar to the
geodetic reader: we all know what T and aAg are and are all
familiar with vector and matrix operations.

W




46

Equation (3-60) and the operations leading to it are much
more abstract, apart from being unfamiliar to most geodesists at the
present time (will this change in the near future?). On the other
hand, the new notation possesses considerable logical consistency and
rigor. We need less special symbols (no T , no ¢ etc.), restriction
to a surface is clearly expressed, and differentiation with respect
to o replaces A and other differences. It is sufficient to look
at (3-47); note how clearly the new notation distinguishes between
T = wp - UP and AW = wP - U !

Furthermore, (3-60) is formulated in terms of derivatives
with respect to o , rather than in terms of approximate finite
differences. In the new notation it is obvious that we have linear-
ization without approximation; this is less evident in the usual

notation. This fact makes it possible to linearize not only at
8 = 0 (which would be the first stage), but also at any intermediate
8, 0 <o <1 . (To repeat, S in (3-60) and similar equations
denotes S(u;®) for any 6 between 0 and 1 , including 6 =0
(telluroid) and e = 1 (earth's surface).) If we linearize at o = 0
and take a6 =1 , then (3-60) reduces, in fact, to (2-30), but it
is valid for linearization at any 6 and is thus much more generally
useful: linearization means here simply differentiation.

In fact, it is the form (3-60) which permits the method of
successive approximation, starting at 6 = 0 and taking consecutively
® closer and closer to 1 , which will be outlined in sec.5.

4. Existence and Uniqueness of Solution
for the Linear Molodensky Problem

We shall now investigate the existence and uniqueness of the
solution of the linear Molodensky problem. As an introduction we
examine first Stokes' problem and the "simple Molodensky problem",
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following (Moritz,1971,pp.27-31),before considering the general
linear problem following (Hormander,1975,chapter I).

The Problem of Stokes.- Stokes' problem is the boundary-
value problem in its simplest form: given the gravity anomaly on

a sphere, to determine the anomalous potential T on and outside
the sphere, assuming T to be harmonic outside this sphere. The
corresponding boundary condition is (2-78); since the radial direction
is normal to the bounding sphere, the oblique-derivative problem
reduces in this case to a problem involving normal derivatives,
which is much simpler.

The solution is given by Stokes' integral formula

T(eA) = T, + S [[agS(v)do + T (s,0) (4-1)

which expresses T on the given sphere in terms of Ag on this
sphere. Here T, is a fixed constant related to the mass of the
earth, and

T,(®,0) = A;sinocosh + A sinosim + A coso (4-2)

is a spherical surface harmonic of the first degree. Polar distance
& and longitude X are spherical coordinates, and A1’ Az’ A3 are
arbitrary constants which have the following physical interpretation
(Heiskanen and Moritz,1967,p.99). Let Eys £y &y denote the

rectangular coordinates of the earth's center of gravity, the origin

being the center of the ellipsoid. Then, approximately,

Ky =5y (4-3)

where g denotes a mean value of gravity over the earth, Therefore,
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nonzero Ai mean that the center of the reference ellipsoid does

not coincide with the earth's center of mass.
A necessary and sufficient condition for Stokes' problem !

to be solvable for continuous boundary values is that the function

Ag does not contain spherical harmonics of the first degree. In

other terms, Ag must be orthogonal to any harmonic function of the

first degree Yl(e,x)

[fag(e,x)Y (o,))do = 0 ; (4-4)
a

cf. (Heiskanen and Moritz,1967,p.97). Since Yl(e,x) contains
three constants, this equation comprises, in fact, three independent
conditions.

The solution (4-1) contains three free constants A1’ A2, A3
The solution can be made unique by putting all Ai = 0 , which means
that the first-degree harmonic (4-2) vanishes.

The fact that Ag must satisfy three conditions and that
the solution (4-1) contains three free constants expresses the
so-called Fredholm alternative; see below.

It should also be pointed out that a solution (4-1) with

A1 # 0 # A2 , 1S physically impossible, although it is mathe-

matically valid as a solution of the boundary-value problem defined
by AT = 0 outside the sphere and by the boundary condition (2-78)
on the sphere.

In fact, for T to be harmonic and zero at infinity, the
centrifugal potential contained in both W and U must be equal,
so as to drop out in T =W - U . This requires that the axis of the
reference ellipsoid coincides with the earth's axis of rotation.
If this common axis is taken as x axis, then the centrifugal

2
<

potential is




E

49

sien (4-5)

Indeed, if the two axes were only parallel and separated by the
vector

(6x1,6x2,0) -

then T would contain a term
2
w (X 86X, + X,6x,) (4-6)

due to the difference of the two centrifugal potentials; this term
and therefore T , would not be zero at infinity. The same would
hold if the two axes were not parallel.

So the two rotation axes must coincide. Since the earth's
rotation axis passes through the center of mass for physical reasons,
and since the axis of the ellipsoid contains the center of the
ellipsoid for reasons of symmetry, both centers must Tie on the
common axis, which is taken as the x coordinate axis. This implies

3

that the two centers can differ only in the A coordinate, so that

€, and £y s and therefore A1 and A2 by (4-3), must be zero.
Thus, if a solution (4-1) is to be physically meaningful,

only A3 can differ from zero, so that the solution for a rotating

earth has, in rea]ity,on]y one degree of freedom. Since A1 = A2 = 0 ,

it is quite natural to take also A, = 0 , thus letting the center

of the reference ellipsoid coincide3with the earth's center of mass.
The Simple Molodensky Problem.- This is the linear Molodensky
problem for a spherical reference surface (sec.2). We shall prove
existence and uniqueness of the solution for this problem by
establishing a one-to-one correspondence between the Stokes problem

and the simple Molodensky problem.
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Let us consider the telluroid J} , on which the boundary
condition (2-75) is defined, together with a sphere S' concentric
to the reference sphere and such that | is completely inside S'
(Fig.4). This sphere S' might be called Brillouin sphere, after
the French scientist who proposed gravity reduction to a level sur-
face completely outside the earth.

The function
F = rag (4-7)

is well known to be a harmonic function in space, r being the

Brillouin sz;;iii”’|lllllh
Sl

Figure 4

The Brillouin Sphere




variable radius vector of the point under consideration (ibid.,p.90).
As the boundary values of Ag , and hence of F , are given on |
the surface Z , we can compute F , and hence ag , at every
point outside ) by solving an external Dirichlet problem, which
is uniquely solvable for continuous boundary data (cf. Kellogg,1929,
p.314). In particular, this gives Ag at every point Pr between
the surfaces )} and S' --to be denoted by ag(r) =--and on the
Brillouin sphere itself--to be denoted by ag'

From the values of Ag along a radius it is straightforward
to compute radial differences of the potential T : by (Heiskanen

and Moritz, 1967, p.92) we have \

= (P17} == e*aglr} -, (4-8)

which on integration gives

(rZT)P - (r2T)P, = ?rzAg(r)dr (4-9)
P

or with the symbols of Fig.4,

R

rf,T - RET' =r?r2Ag(r')dr (4-10)

P

T denoting the potential on the telluroid and T' on the Brillouin
sphere.

Now we can solve Molodensky's problem by the following three
steps:

1. Computation of ag(r) and Ag' by solving the external

Dirichlet problem.
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2. Determination of T' from Ag
problem for the sphere S'
3. Computation of T at ) from T' at S' by (4-10).

by solving Stokes'

Steps 1 and 3 are one-to-one because Dirichlet's problem ic
uniquely solvable and because different functions Ag on )} corre-
spond to different functions Ag' on S' and vice versa. Thus the
question of solvability of Molodensky's problem for the telluroid
Y has been reduced to the question of solvability of Stokes' problem
for the sphere S' , to which the answer has been given above. For
the simple Molodensky problem, therefore, we have exactly the same
situation concerning existence and uniqueness of solution as for
Stokes' problem: Ag must satisfy three conditions, which may be
expressed in the form, analogous to (4-4),

jjAg'(e,x)Yl(e,x)do =0 4 (4-11)

(¢

which means that the upward continuation of Ag to S' must not
contain any first-degree spherical harmonic.

Corresponding to these three conditions, the solution for
T' , and consequently also for T , will contain three free
constants (this is true if the linear boundary value problem is
considered in itself; for physical reasons, two of these constants
must be zero). Again we get a unique solution by requiring the
spatial function T to have a form that contains no first-degree
spherical harmonics.

The Linear Molodensky Problem.- The general linear
Molodensky problem for an arbitrary reference surface for an arbi-
trary reference potential, as formulated in sections 2 and 3, is an
oblique-derivative problem.

The classical boundary value problems--the Dirichlet problem
and problems invoiving normal derivatives--can be formulated in terms




of Fredholm i~tegral equations of the second kind, and the well-
known Fredholm alternative holds (cf. Kellogg,1929,p.298):
If the homogeneous boundary-value problem has no non-zero

solution, then the corresponding nonhomogeneous problem is solvable
for arbitrary continuous boundary values.

If the homogeneous problem has n independent solutions,
then the boundary values must satisfy n independent conditions for
the corresponding nonhomogeneous problem to be solvable, and the
solution depends on n free parameters (because of the n inde-
pendent solutions of the homogeneous problem).

An example is furnished by Stokes problem, in which n = 3

An analogous formulation of the oblique-derivative problem
leads to singular integral equations for which the Fredholm alter-
native is, in general, no longer valid. An example is Molodensky's ]
integral equation which is no longer a Fredholm equation of the
second kind (contrary to what is sometimes said in the literature).

However, if the oblique-derivative problem is regular, that

is, if the direction of the derivative is nowhere tangential to the |
boundary surface, the Fredholm alternative is still valid, in spite
of the singularity of the corresponding integral equation; cf.
(Miranda,1970,p.86); this means that the number of conditions on the
boundary data f , given by (2-57), is equal to the degree of
freedom in the solution, say n

In the simple Molodensky problem we again had n = 3 . In
the present general linear case, n must be at least three, in view
of the three degrees of freedom in the spatial shift of the origin,
but perhaps n =4 or 5 ?

Hormander proved that even in the general form of the
linar Molodensky problem n equals 3 . First, the problem defined
by (3-60) and (3-61) is reformulated as follows, putting

— —— T T——— ._____J 4




(4-12)

W+ <moS,g> = f (4-13)

(the same notations were used in sec.2). It thus becomes: to determine
a function T satisfying

1. Harmonicity: AT = 0 outside S . (4-14)

2. Boundary condition on S

(T + <m,grad T>)oS = f . (4-15)

3. No first-degree harmonic:

T(x) =£+0(35) , r>= , (4-16)
r

¢ being some constant.

Hormander proved that the corresponding homogeneous problem, that
is, (4-14), (4-15) and (4-16) with f = 0 , has the unique solution
T =0 . The general solution of the homogeneous problem, without
imposing (4-16), therefore contains the three independent spherical
harmonics of degree 1. This proves that n = 3 also for the general
linear Molodensky problem (if n were >3 , the solution of
(4-14), (4-15), (4-16) would no longer be unique).

The principle of the Hormander's procf of uniqueness may be
illustrated by the corresponding proof for Stokes' problem. Take
Laplace's operation in spherical coordinates r, 6, A (cf. Heiskanen
and Moritz,1967,p.19):

2
1 3 23T 1 ) —— ] 1 9°T
AT = = —(r°==) + —(sino—) + (4-17)
r2 o L rzsineae o8 rzsinze A
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Let us form the integral

J = ffer%%ATrzsinedrdedA (4-18)

r>1

over the exterior of the reference surface, which we identify with
the unit sphere ¢ by choosing the radius as unit of length. Since
AT = 0 outside o , this integral will be zero:

J=0 . (4-19)

SR N e S (4-20)

where the Ji correspond to the three summands on the right-hand
side of (4-18). We shall also use the abbreviations

dv = r2sinedrdeda (4-21)
for the volume element and

do = sinededa (4-22)
for the surface element of o , so that

dv = r?drdo . (4-23)

With these notations we have




Tr denotes 3T/3r as usual, and further

29T 2+2 3
r_('r' -57) = 4y Tr + 2r TrTrr

242 39 2
= 4r Tr ) W(Tr) >

so that

b 3 e - P e
{ZrTrEF(r T )dr = 4{r Todr + {r ar(Tr)dr

The Tast term is transformed by partial integration:

Te3rv2sas o 2udv2 R
fr Br(Tr)dr (r Tr)r*w N

o Tap2ed
j r)r=1 {3r Trdr
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The first term on the right-hand side is zero since T = O(r—z) .
in the second term we have r =1 , so that on substituting this
expression into (4-25) we get

erT (r2T )dr = frzT dr - (T

On multiplying this equation by do and integrating over o ,
taking (4-23) into account, we get for (4-24):

= [[[T2dv - [[T2do . (4-27)

r>1

Now we compute J2 . In view of (4-17) and (4-18) we have

| R g
J, = [fjerT ae(s1neTe)dv
r>1 r?sine
= fferT (51neT )ydrdoda (4-28)
r>1

Let us first perform the integration with respect to 6 . By
partial integration we get

erT e(s1neT yde = (ZrTrsmeTe)e=1T -

m
(2rTrs1neTe)e=° - £2rTres1neTede ‘
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m
- J2rT_ T sinede
@]

} : .

- Jre=(T_ )sinede
oare
Thus (4-28) becomes

s 3 ;a2 ; .
- M ££{rar(Te)dr51nededA g (4-29)

The integral with respect to r 1is again transformed by partial
integration:

fr —(T2)dr = (T3),_, *+ {T:dr

We multiply by do and integrate over o , obtaining in view of
(4-23):

fffl— T2dv + ij & . (4-30)
r>1r

The integral J3 is transformed in exactly the same way

as J , with the result

= 5= T + [[—2do (4-31)

r>1r sin 6 o sin”e@




: and we are through.
; We only have to collect (4-27), (4-30) and (4-31) and to
‘ take (4-19) and (4-20) into account. The result is

g 1 2
: JIJRTS + S TS + == T<)dv *
E | 2l Foopt B By B

1
sinze

k £ [1(T2 4 T2)do - [fT2do = 0 . (4-32)
a a

Now T is nothing else than the radial component of the gradient
grad T , and

1 ;i
r Te T rae
(4-33)

1 I T

—_—

rsiné A  rsinéaax

are its horizontal, or tangential, components, the total tangential
component having the squared magnitude

2
2 1 2 1
I T T g N y (4-34)
Bs r2 ¢ r sinze

Thus (4-32) may finally be written

[[[lgrad T|%dv + [[(T? - T2)do = O (4-35)
g

>l
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By means of this formula we can prove stability for Stokes'
problem as follows. The boundary condition (2-78) becomes for the
homogeneous problem (Ag = 0) with R =1

T «£2F =0 , (4-36)

X

from which we get

= =2 on o il (4-37)

) 54

If T on the sphere o 1is expanded into a series of Laplace's
surface harmonics,

T(e,1)

R (4-38)

then

ijidc En(n+1)ffT§do ; (4-39)
o o o

cf. (Molodenskii et al.,1962,p.87). Furthermore, by (4-36),

[{T%do = 4f[T%do =
ag N a

I

4§j[Tidc ) (4-40)
O¢

because of the orthogonality of the spherical harmonics.
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Since the first term in (4-35) can never be negative, there
must be

JIa2 - 12)de s 0 . (4-41)
o

This equation is interesting in itself, since it shows that the
average square of the horizontal gradient will always be smaller
than (or equal to, but only for T = 0 ) the average square of the
vertical gradient; this is obviously true for a sphere of any radius
R

Here we shall use (4-41) for the proof of uniqueness. We
substitute (4-39) and (4-40) and obtain

ozo [n(n+1) - 4]”Tidc Zele iy (4-42)

The coefficients within brackets are positive for n = 2,3,4,
So if we can show that Tn =0 for n=0 and n=1 , then all
other Tn must also be zero if (4-42) is to hold.

For n =1 we have, in fact, T1 = 0 because of (4-16).
From the well-known spherical-harmonic relation (cf.Heiskanen and
Moritz,1967,p.97)

il E
T = =1 49, (4-43)

we get for n =0 and R = 1

To il L
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because Ag 1is identically zero, for the homogeneous Stokes problem.
Thus we have proved that

120 (4-44)

is, indeed, the only solution of the homogeneous Stokes problem if
(4-16) 1is prescribed.

Of course, this proof is considerably more involved than the
simple reasoning concerning Stokes problem using spherical harmonics,
as presented at the beginning of this section. The essential
advantage of the quadratic condition (4-35) is, however, that it
can be generalized to the linear Molodensky problem.

This has been done by Hormander. His proof is, however,
extremely involved and laborious and cannoc be given here. Even
his uniqueness theorem (Hérmander,1975,pp.22-23) is so complicated,
involving many expressions and parameters, that it cannot be
reproduced in the present report.

Let it be sufficient to mention that HGormander's theorem
contains a number of parameters which depend on properties of the
earth's topography. Larger slopes of the terrain (say 60°) are
permitted provided they do not occur too frequently. Although a
detailed study of fitting Hormander's parameters to the actual
earth's topography has not yet been made, it appears that the theorem

is general enough to ensure the uniqueness of solution of the linear
Molodensky problem, with an ellipsoidal reference field, for the
actual topography of the earth, the existence of a solution being
generally guaranteed by the theory of the oblique derivative nroblem.
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5. Nash-HOormander Iteration

In sec.1l we have outlined Newton's method, which is widely
used in advanced implicit and inverse function theorems of nonlinear
functional analysis; cf. (Sternberg,1969).

In his treatment of the nonlinear Molodensky problem,
Hormander (1975,chapter II) used a different iteration method,
which is a discrete scheme analogous to a continuous method used by
Nash (1956).

The essence of the twe methods is illustrated by Figures 5
and 6. The problem in both cases is the same: consider a function

A (5-1)

which can simply be a function of one variable, as shown in the
figures, or a nonlinear operator mapping, for instance, one Banach
space X into another Banach space Y , so that

3 & e Pl (5-2)

Given the value o(u) of ¢ at some unknown point x = u , to
determine u

We proceed as follows, writing the formulas for the simple
case of an ordinary function of one variable; the Banach space case
is formally quite the same. We assume an approximate value ug for
u and compute ¢(uo) . The further procedure is different for the
two methods.

In Newton's method (Fig.5) we intersect the tangent at
¢(uo) with the line

y ¢(u) = const. (5-3)
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< y = ¢(x)
A ¢(u,)
1
:
1
¢(u) - — ¥ = ¢(u)
.(u°) = const.
X
UO u u2 ul
Figure 5
Newton Interation *
Yy
A ¢(u)
"2 & f
y = ¢(x)
‘ (
f
o
#(u))
el 4
u, CPR PO u
Figure 6

Nash-Hormander Iteration
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parallel to the x-axis; this line is known because ¢(u) {is given.

In this way we obtain u, and can calculate ¢(u1) . The tangent

at ¢(u1) is again intersected with the 1ine (5-3), and the proce-

dure is repeated. The sequence U » u u tends to u provided

AT ot

the iteration converges.
In the Nash-Hdérmander scheme (Fig.6) the known difference

f o= s{u)y -~ olu ) (5-4)

is split up in a suitable way into a convergent series:

ol T Rk Lk B Ef " (5-5)

The tangent at ¢(u°) is now intersected with the Tine

y = ¢(uo) + f_ = const., (5-6)
which gives o, - The tangent at ¢(u1) is intersected with

y = ®(uo) + f  + f; = const., (5-7)
which gives u, - The procedure is indefinitely repeated.

The respective iteration procedures are illustrated in the
figures by heavy lines with arrows. The comparison of the two
figures already gives an indication that the second iteration
scheme may have certain advantages over Newton's method. For instance,
in the Nash-Hormander scheme, the u, increase more or less
monotonically to u , whereas in Newton's method u, may be "way

out" (Fig.5). In the second scheme we have, approximately,

- =1
ooy = Uy = 0000 ] e (5-8)




so that the convergence of the approximation can be controlled

almost arbitrarily by suitably selecting the terms in (5-5); in

the Newton method, the convergence is quadratic according to (1-22).
The formulas for Newton's method have already been given in

sec.l. In the sequel we shall be concerned exclusively with the

Nash-Hormander iteration. From Fig.7 we read off:

£y q = 80 ) = wln )« B ., (5-9)
= faa i A (5-10) 1
8§ = w(u)h (5-11)
Hoje B0 % G0 (5-12) 4

.(uk+l) €x
h
3
o(uk) = s LIS
* %! . A
$x-1 éx
~ X
Ug-1 Uk Ukt
Figure 7

The iteration scheme
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Here we have put

vt = forwp] T (5-13)

where ¢' denotes the derivative with respect to u . Geometrically,
€ is the error due to nonlinearity of the function ¢ ; it is the
"height of the steps" in Figures 6 and 7.

According to Fig.6 we start our iteration with

h = f (5-14)

by (5-10), since there is no error By to start with. Then, by :
(5-11) and (5-12),

o
"

vludh, (5-15)

U, = u_+ 6§ ., (5-16)

£, " ¢(u1) - @(uo) - h

h, = f, - ¢

1 1 o - (5_17)

§, = w(u)h,

The procedure in repeated with k = 2,3,...
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An essential feature of the scheme just described is that
the error €, , committed at the (k-1)th step is taken into
account and corrected at the next step by means of (5-10).

Unfortunately, this very simple iteration scheme cannot be
proved to converge for the Molodensky problem. Therefore, Nash and
Hormander introduced a suitable smoothing process, which also
provides a natural determination of the terms fk in (5-5).

Let us introduce asequence of smoothing operators So, S

in such a way that

1’
Sys wees

lims, =1 , (5-18)

k>

where I denotes the unit operator; in other terms, if Skf is the
result of applying the smoothing operator Sk to a function f
then

1im S f = F ; (5-19)
k>x

so for increasing k , the smoothing becomes less and less. (There
is hardly any danger to confuse the smoothing operator Sk with ]
the boundary surface S !)

To have a simple example, let us take a harmonic function f :
which is developed into a series of spherical harmonics: 1

© Y (8,))
e (5-20)
&0 r‘n+1

and take

_1o+kYn(6,X)

Sel » § =—muge=’_ » (5-21)
n=o r
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so that smoothing is obtained by truncating the spherical harmonic
series or, what is the same, truncation of the spectrum. For
instance,

10 ¥, (8.2)
Sof " n+1 2
n=ol’
11 ¥ (e,x)
S f= ] —
1 n+1
n=or

etc.; it is clear that (5-19) is satisfied.

The reason for introducing a smoothing in Molodensky's
problem is the following. It is a well-known difficulty with many
higher order solutions that the higher order terms are getting
rougher and rougher. This is the case if an iteration involves
differentiation: the derivative is almost always less smooth than
the original function. A case in point is the well-known Molodensky
series for solving the simple (linear) Molodensky problem. The
calculation of higher order terms proceeds through an iteration
which involves successive differentiation, with the result, that
higher order terms can no longer meaningfully be computed from
empirical gravity data.

The Hormander iteration for the non-linear Molodensky
problem has to struggle with a similar difficulty: assume we have
an approximate solution for the potential W(x3;6) according to
(3-34). The calculation of the isozenithal vector m , which is
required for the boundary condition (3-60), requires the calculation
of the matrix (3-43), involving two differentiations. So we "lose"
two derivatives at each iteration, the functions involved will get
rougher and rougher, and the iteration will probably “blow up".

Therefore, we must counteract this loss of derivatives by
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a suitable smoothing, taking care, however, to successively reduce
the amount of smoothing so that (5-19) is satisfied: otherwise we
would not, in the limit, obtain the right result.

Furthermore, the smoothing operator S gives us a natural

k

way of obtaining the terms i 15 (5-5): we put

LI W (5-22)

Fom {8 =8 af 885 (5-23)

k = 1’ 2’ 3, .

In fact,

n

gfk A [so £ (S, =8 ) % (5, - 8,) % «. 2 (5, - sn_l)] ¢

=5 f (5-24)

and

If, = lims f = f (5-25)

o n—->e«

by (5-19), so that (5-5) is satisfied.

Now our problem is to modify the iteration equations (5-9)
through (5-12) to take smoothing into account. First of all, take
equation (5-11). It is easily seen to correspond to the solution
of the linearized problem in the k-th step, as y involves the
linearized operator ¢' through (5-13). Thus it is there where loss
of derivatives occurs, and smoothing is appropriate. Hence, instead of
computing y at u, » we compute it at

v. = S u ’ (5-26)




and (5-11) is replaced by
g, = w(vk)hk . : (5-27)

Next, consider (5-10). The term f is already smoothed, being

k
defined by (5-23), but B s is not, being given by (5-9) which
involves ¢(uk) and ¢(uk_1)

. The obvious thing would be to replace
€)1 by Skek_1 , but this will not work, as we shall see.
The right answer it to put

€ b= (5-28)
where

Bow )a (5-29)

represents the sum of all errors before the k-th step, and to

replace - in (5-10) by
e i T T L
obtaining
Ry 7> S.6 % S ng By (5-30)

Collecting these results, we replace (5-9) to (5-12) by ]

Eyay * o(uk) - ¢(uk_1) * By (5-31)
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W wf, =R w8 SR (5-32)
Ve = S.u s (5-33)
8, = wlv b, (5-34)
PR R T (5-35)

This is the Nash-Hormander iteration scheme with smoothing.

Will this scheme converge to the right solution? A necessary
condition (unfortunately it is by no means sufficient) is obtained
by expressing ¢(uk) - ¢(uk_1) from (5-31):

|}
=
e
m

Blu ) = w3 = b k-1 ° (5-36)

replacing k-1 by k

|
=

o(uk+1) - ¢(uk) =0, *e. (5-37)
and summing from 0 to n

o(un+1) - @(uo) = th + Zek . (5-38)
By (5-4) this should tend to f if n > o

Ihy + Esk =1 (5-39)

(o]

To verify this condition for (5-32), we calculate by
summing (5-32) from 0 to n
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n n
Phowite =g Bov o (5-40)
(o] o]
Now, by (5-29)
n-1
SnEn i Sn ; €x
k=0

so that, with (5-25), condition (5-39) will hopefully be satisfied.
(It is easily seen that (5-39) would not be satisfied if we
had put hk = fk + Sksk_1 which was our first choice for modifying
(5-10)).
Equations (5-31) through (5-35) are the basic formulas for
our iteration. To start, we put

kh = §f "
o o
vo y Souo £
(5-41)
8= ROV IR
u1 = Uo o+ 50

Next, we put k =1 in (5-31) through (5-35), then k = 2 and
so on.

Hormander writes these equations in a somewhat different
form, introducing a parameter @ (eo§e<w) which has two tasks:




1. to represent the variable x as a function of 6
x = x(8) , (5-42)
in such a way that

(5-43)

Tim x{e) ;

B>

2. to serve as a parameter for the smoothing operator,
such that

(5-44)

In both cases, ek(k=0,1,2,...) represents a discrete sequence
of values of the parameter 8
A choice for 8 1is

o, = (6" + k)t (5-45)

u denoting some large constants. Then the difference

(5-46)

v 1/u H 1/ u
(eo + k + 1) - (eo + k)

1 \1/u
Sy & AR R 1}
K [ ez+k

1 -u
ek(l +K Gk * voe=l)
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is

= el ol -} 2
b = rT e ML+ 0(8")) (5-47)

and can thus be made as small as any desired power of e;l

The difference quotient

u -u [
S k+1 k k
o= =mme N o R (5-48)
k Ak Ak

can, therefore, be made as close as desired to a derivative, so
that the discretization error becomes very small as k + =

Hormander writes the basic iteration scheme in a different
form, which explicitly involves the parameter & . Using (5-23)
and (5-48) and putting

we transform (5-31) through (5-35) into

e =k 3 al e
9 = 4 [(Sk Sk—l)(f Ek—l) Ak—lskek—i] ’

v, " Skuk "
u = wlv,e,
u ALY ) T s
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®
"

. [@'(uk) = °'(VR)J u_ (5-49)

eﬁ Ail[ ¢(uk+1) - @(uk) - ¢'(uk)Aka]

k
the error due to nonlinearity. The quantity

Here e denotes the error due to smoothing, and e/ expresses

E, = J ace (5-50)

represents again the sum of all errors before the k-th step.

The smoothing operator S used by Hormander is rather

similar to the simple example (5—21). It also amounts to a
truncation of the spectrum. In (5-21) we had a discrete spectrum,
n taking the values 0,1,2,..., and the operator Sk was also
defined only for integers k . Now, however, we have a parameter
8 that runs continuously from o, to =« , and Se has to be
defined for continuous 6 . Therefore, one considers functions
defined on a plane, or generally in R™ , which have a continuous
spectrum (2 or n-dimensional Fourier transform). Now the smoothing
simply consists in the application of a low-pass filter, which
suppresses higher frequencies, Teaving lower frequences unchanged.
In other words, the spectrum of the function to be smoothed is

multiplied by a function

Holu) = H(Y) (=8

where H(w) 1is a symmetric function of the frequency w , which

is 1 for |w| g w, and 0 for J[uw| 2 w, ; between w, and w, ,

H(w) 1is interpolated by an infinitely differentiable function,
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H(w)

Figure 8

Smoothing by a low-pass filter

so that H(w) 1is everywhere infinitely often differentiable. This
is shown, in one dimension, by Fig.8; the generalization to higher
dimensions is straightforward.
Equivalent to a multiplication of the spectrum by (5-51) is,
of course, a convolution of the function to be smoothed with a
function whose Fourier transform is (5-51); cf. (Papoulis,1968,p.74).
The smoothing just described can be applied, with siight
modifications, to functions with support in a compact set K , that
to functions which are zero outside K . This finally gives the

i e
s

csibility to extend the smoothing operator Se to functions
{efined on a compact manifold, for instance, on the earth's surface
“e telluroid. This is done by covering the manifold by several
“4te patches and splitting up the given function into a sum
with compact support by a "partition of the unity";




cf. (Loomis and Sternberg,1968,p.405).
In view of smoothing it has been convenient to let

fer]
=
=
=

from eo to « ., This contrasts to sec.3, where we had O

o A
=]

(1] @
- A

It is, however, easy to transform a parameter in [0,1] to
[eo,w] , for instance, by the transformation

o =6 + tan(y mo') . (5-52)

6. Existence and Uniqueness in the

Nonlinear Molodensky Problem

The iteration procedure outlined in the preceding section
is now applied to Molodensky's problem; now

= S (6-1)
represents the earth's surface to be determined, and
o(u) = ¢ (6-2)

is the given gravity vector on S ; cf. sec.l.

The crucial problem is, of course, to prove convergence of
the iteration scheme for conditions applicable to Molodensky's
problem. This is so difficult and complicated that it cannot be
done here; the interested reader is referred to (Hormander,1975).

We shall restrict ourselves to stating the main results.
First we must say a few words a“nut the norms which have been used
in this problem. A norm is needed to characterize, in some sense,
the "size" of the function under consideration; it can be considered
as a generalization of the norm of a vector, e.g.
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[ = 2 2 21 /£2 _
lall = (a® + a2 + a?) (6-3)

for a vector a = (al, a, a3)
A well-known norm of a continuous function f(x) defined

in a convex compact set B in R" s

IFll, = suplf(x)| (6-4)

XeB

where "sup" denotes the supremum (which, for continuous functions,
equals the maximum value). The functions f for which the norm
(6-4) is finite form a Banach space; cf. (Loomis and Sternberg,
1968,p.218). This space will be denoted here by H°

An appropriate norm for functions that are differentiable
as well as continuous is

3f
IX,
i

£, = sup|£(x)| + sup]| ; (6-5)
X&¢B

X€EB

where 3f/3x_ denotes any partial derivative. The functions with
fintie norm ?6-5) form a Banach space Hi

Now it is of basic importance for Molodensky's problem, as
for many problems in potential theory, to define norms [/f||  for
O<a<l , that is, spaces H%* intermediate between H® and Hi
For this purpose we consider continuous functions that satisfy a
Holder condition with exponent o ; they are functions for which

sup lf(x*ww

X,Y€EB ]X‘.Y|a

is finite. These functions form a Banach space H® ; the norm is
given by




IFll, = suplf(x)| + sup [Flx)=0ul} - (6-7)
%  xes x,yeB  [x-y|*®

It can be shown that

WP o HRt % s oyl (6-8)

for

| S RETRETE S s S g (6-9)

that is, there are more functions in H° than in H*! , more
functions in H®*' than in H%*%2 , and more functions in H®2 than
in H1 . So satisfying a HOolder condition with exponent o 1is a
stronger condition than mere continuity and weaker than differentia-
bility.

We may also consider a Holder condition (6-6) with exponent
o =1 ; it is seen that this is almost (although not completely)
' for the
space of functions satisfying a Holder condition with o = 1 rather
than for functions with finite norm (6-5).

So far, we have defined spaces H®  for O<asgl . For a

the same 2s differentiability. In fact, we shall use H

>1 we proceed as follows. Let k be a positive integer such that
k<agk+l (for instance, for a = 5.75 there is k = 5 ). Denote
by X any derivative of k-th order (for instance,

5

2 3
9 xla X,

for k =5 ). Then the norm |||, is defined as

s Al
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Illy = supl £(x)] + sup 1D F(x)- “ R (6-10)

! x,y€B | x= .Y[

It is clear that (6-7) is a special case of (6-10) with k =0

In other words, the space H* consists of continuous
functions which are k times differentiable and whose k-th
derivatives satisfy a Holder condition with exponent a-ksgl

Reformulation of the Molodensky Problem.- HOormander has
reformulated Molodensky's problem in the following way: to determine
a closed surface S in R3 , which is a one-to-one image of the
unit sphere, from given values g and W , such that the following
conditions are satisfied:

3
W= WS +JaA |, (6-11)
273 3
g = gcS = W'oS , (6-12)
W(x) = V(x) + 7 02(x2 + x2) (6-13)
aV = 0 outside S , (6-14)

V(x) CO:St. lx|3)

; (6-15)

Uniqueness of the solution is achieved by postulating that the
harmonic function V(x) , which represents the external gravitational
potential, contains no first-degree spherical harmonics; this is
expressed by (6-15),

[x| = r (6-16)
denoting the radius vector. The second term on the right-hand side

of (6-13) denotes, of course, the centrifugal force potential,
being the angular velocity of the earth's rotation.

el
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The new feature is (6-11) instead of simply taking W = WoS ,
which would be the restriction of W to S . In the modified
expression, the aj are three constants to be determined, and the
Aj are three suitab;y assumed functions. The purpose of adding the
lTinear combination Ja_.A is to ensure the solvability of Molodensky's
problem for arbitrar} boundary data.

This is to be understood as follows. Assume the earth's sur-
face S to be known, and consider the given function W = WoS
We can now solve the exterior Dirichlet probiem

AV =0 , V> for r > ,

. 1 2.¢2 2 %
VoS-W--Zw(Sl-"Sz) - (6-17)

which gives, for every data function W , a unique solution V(x)
For arbitrary data W , the spatial function V(x) will, in
general, contain spherical harmonics of first degree, contrary to the
condition (6-15).

Let now (6-11) be used instead of W = WoS . Then (6-17)
is replaced by

VoS = W - 5 w?(s? + s2) -

3, A, (6-18)

W

Again, the solution of the exterior problem with boundary data VoS
gives a unique solution V(x) which will contain three linearly
independent spherical harmonics of the first degree. Now, however,
the three constants a can be chosen in such a way that these

3
three first-degree harmonics vanish.

This is readily seen to lead to three linear equations for
the three unknowns a,, a,, a, . These equations will have a unique
solution, provided the boundary-value problem




AV

]
o
-

3
voS = Ja_ A, (6-19)
1

has a solution v(x) which contains three linearly independent
forst-degree harmonics

(clsine cos)y + czsine sinx + c3cose)/r2 h (6-20)

En flact, c,6 can then be chosen to be equal to the < of the

boundary-value problem (6-17), and similar for c, and By e Since

the problem (6-18) is the difference of problems (6-17) and (6-19),
all first-degree harmonics will cancel in the solution of (6-18).
To achieve this, we may select the functions Ai as follows:

A1 . (sinecosx)oz

2

sing sina
A2 = (————————)oZ
r r

: D))

3 l"2

(6-21)

If the earth's surface S coincided with the telluroid ) , then
the spatial functions corresponding to the Ai by a solution of the
exterior Dirichlet problem would be the first-degree harmonics

Sinecosx

’
r,2

etc. (6-22)

themselves, for which the condition (6-20) is certainly satisfied
(with St ai). If S does not deviate too much from § , then
(6-20) is still satisfied becausg gfioidikiii i ———
Ai(¢,A) are now considered as functions on S instead of ) (now,
of course, c, # a, in general). More generally, if the Ai(¢,A)

as given by (6-21) independently of the parameter ¢ , are considered
as functions of o with S(e ) = ) (telluroid) and S(=) = S




(earth's surface), then

a, a aj(e) (6-23)

will be functions of 6
The Tinearization of the modified Molodensky problem defined
by (6-11) through (6—15)315 now done as in sec.3. The only difference

is the additional term ZajAj » s0 that the boundary condition
(3-60) is replaced by i

. . . - 3
(V + <m,grad V)o} = W + <mo),g> - ZéjAj " (6-24)
1

where a, is the derivative of (6-23) with respect to 6 . Now for
arbitrary boundary data W and E there exist unique constants
a,, a,, &, , so that the corresponding boundary-value problem with
AV = 0 outside J(e) admits a unique solution V(x) that does not
contain spherical harmonics of first degree. l
To the Molodensky problem reformulated in this way, the
Nash-Hormander method is applied. Convergence of this method can
be proved using various Holder norms and estimates for the linear
problem and also for the nonlinearity. A1l this is extremely difficult
and laborious. Finally one obtains the
Theorem of Hormander. Let e > 0 , then: 1
(1) For all W and g in a H?*® neighborhood of Wo
and 50 s then the modified Molodensky problem defined by equations
(6-11) to (6-15) has a solution

§ close to S_ =] 1in B2*®  and

- L ol
(2) If W and g are in H® for some a>2+e¢ which is not
an integer, then BeR™ . of 8,

(3) One can find a gre netghborhood which cannot contain
e
two solutions of the problem.
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Let us look at this theorem more closely and explain its
meaning. A H2+€ neighborhood of WO = W(u;eo) consists of all
functions W for which

1S TR (6-25)

2+€
where & 1is sufficiently small and the norm is defined by (6-10) with
a=2+¢e¢ . Smallness of this norm implies that not only the maximum
deviation of W from WO P

max W - WOI

is small, but also that

max|W' - Wél
and
max|W" - W;l

is small, so that not only W must be close to Wo , but also the
first and the second derivatives of W must be close to those of
WO . In addition to this, something more is required. If e =1 |,
then also closeness of the third derivatives must hold; if O0O<e<l ,
the intermediate HGlder condition is stronger than mere closeness of
the second and weaker than closeness ot the third derivatives: the
difference of the second derivatives must satisfy a Holder condition.
Closeness of the telluroid )} and the earth's surface S

G means that the maximum deviation of the surface is small

in
and that, in addition, slopes (first derivatives) and curvatures
(second derivatives) are also similar for S and § ; in addition,

there is a Holder condition for the difference of the second deriva-
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Part (1) of Hormander's theorem asserts the existence of a
solution provided we have a good approximation J} for the earth's
surface S not only with respect to the maximum deviation between
S and )} , but also with respect to first and second derivatives
(plus a Holder condition), and aiso a good approximation to potential
and gravity.

This condition is obviously very strong. If one uses an
ellipsoidal reference field and the telluroid according to the usual
definition, then the actual gravity field and the earth's surface
probably fall short of this condition. It is, however, not required
that the initial approximations for S and W satisfy this condition;
it would be sufficient if any intermediate approximation would meet
it (because then this intermediate approximation could be considered
as the starting point). Still it is not clear even then whether
Hormander's theorem could be applied to the actual earth.

Part (2) of the theorem assures that the resulting surface
S will be as smooth as the data: if the data are n times differen-
tiable and if the n-th derivatives satisfy a Holder condition, then
the same will hold true for S

Part (3) ensures uniqueness but under an even stronger con-
dition, (H3+€ neighborhood) than for the existence theorem of
Part (1) (H neighborhood). However, Hormander thinks it highly
probable that H3+€ could be replaced by H2+€ s, S0 that the
condition for uniqueness would be the same as for existence.

In Part 2, integer values of € are excluded; this reflects
the well-known fact that Holder conditions with € # 0 are essential
in potential-theoretical considerations. In Parts 1 and 3, also
integer € are admitted.

2+¢

In conclusion we may say that Hormander's theorem, although
not directly applicable to the real earth, gives the first mathe-
matically exact results on existence and uniqueness for Molodensky's
problem and is thus of fundamental importance.
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7. The Gravity Space Approach

Recently, F. Sansé (1977 a,b,c,d) has given a completely
different approach to the nonlinear Molodensky problem. The idea is
to use the three cartesian components of actual gravity, 9,5 9,5 95

as new curvilinear coordinates, instead of the cartesian coordinates
xl, x2, x3 themselves. Thus the potential W becomes a function
of the g, o

=
]

W(g) = W(g,» 9,5 9;) . (7-1)

On the physical earth's surface S , the three components 9, of

the vector g are given, as well as the potential W ; therefore

the three curvilinear coordinates 9,5 9,5 95 of each point of the

surface S are known, or S is a known surface jif expressed in i

terms of coordinates 9,

There are two ways of interpreting g : either they may be
2 1
considered as curvilinear coordinates in ordinary space, or as
cartesian coordinates in an auxiliary space, called gravity space.

Using the second interpretation, we may say that S becomes a known
surface in gravity space or the free boundary-value problem is

transformed into a fixed boundary-value problem. The simplification

which is achieved in this way for the nonlinear Molodensky problem
is so decisive that inconveniences and difficulties arising with
this indirect approach are more than compensated as far as theoreti-
cal investigations on existence and uniqueness of the solution are
concerned. S e
The main inconvenience is that a one-to-one correspondence
between cartesian coordinates xj and gj outside and on S ,
which is the region in which we work, is possible only if the earth
is nonrotating. To see this, consider ellipsoidal gravity y along
a radius vector in the equatorial plane. As the height increases,
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y first decreases but then it increases again because the centri-
fugal force becomes dominant. So at a certain elevation, y will be
the same as on the ground, which violates a one-to-one correspondence
between gravity vector and position. For the actual gravity field
the situation is similar as in the ellipsoidal case.

If the earth is considered as nonrotating, then the corre-
spondence between gravity and position is seen to be one-to-one
(provided the Marussi condition holds, see below). In other terms,
the correspondence is unique if we work with the gravitational
potential V and the gravitational vector grad V instead of the
gravity potential W and the gravity vector g = grad W

It is, of course, clear that only W and grad W (including
the centrifugal force) are directly measurable. However, the effect
of centrifugal force can be calculated with sufficient accuracy on
the basis of our current knowledge of the earth's surface (the error
in the centrifugal force is less than + 0.005 mgal for a position
error of + 10 meters), and subtracted from W and grad W to give
their gravitational counterparts V and grad V . Therefore, Sansd's
boundary-value problem, which uses gravitation instead of gravity,
is practically as meaningful as the original Molodensky problem.

In the sequel we shall thus work with the gravitational po-
tential V , which is a harmonic function, and take g as

g =grad V , (7-2)
so that g s the vector of gravitation rather than gravity. We

shall, however, continue to call g , even if defined by (7-2), the
gravity vector, to be in agreement with Sansd's terminology and

with the term "gravity space” (this is consistent with current
terminology if we consider the earth as nonrotating).
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We can thus reformulate Molodensky's problem in terms of
V as follows: to find a function V(x) which is harmonic outside
a unknown closed surface S

AV = 0 (7-3)

and which, together with its gradient, assumes on S the given
boundary values

VoS = V(u) (7-4)

(grad V)oS = g(u) (7-5)
where

u = (o,A) (7-6)

as an sec.3n
We now introduce the components 9, of g as new coordi-
nates, which are functions of the rectangular coordinates (xl, X,

x3)
i T T (7-7)
If "his transformation is to have an inverse,

Xy = X,09.) (7-8)

then the Jacobian determinant

g
) 4
det ——
[:ijjl
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must be nonzero everywhere on and outside S . Since

g' = ax 3 (7-9)

this condition is

o
det [—i—!——J# a (7-10)

9X,2aX,
LD

which is nothing eise than the Marussi condition; this condition
(restricted to S ) has already beenused before; cf.eq. (3-48). It
will be assumed that the Marussi condition is satisfied everywhere
outside and on S

Now the potential V becomes a function of the vector g

V.= V(g) = V(9,5 9,5 95) (7-11)

As we have mentioned, this would reduce Molodensky's problem to a
fixed boundary-value problem (actually a Dirichlet problem) in
gravity space. Since V as a function of x satisfies a linear
partial differential equation of second order, which is Laplace's
equation AV = 0 , it does the same as a function of g since
the transformation (7-7) or (7-8) transforms Laplace equation into
another linear second-order partial differential equation. However,
since the transformation (7-8) is actually unknown, the coefficients
of this differential equations are noc¢ known, and therefore this
approach appears hopeless.

Sansd has found an ingenious way out of this difficulty by
transforming not only the coordinates but also the potential,
introducing an adjoint potential
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*=xg-V=x49 -~V ; (7-12)

this is a Legendre transformation familiar from other fields (ordi-
nary differential equations, analytical mechanics, thermodynamics,
etc).

Differentiating (7-12) with respect to g, we get

Bxk

59,

%]
<
~

%)
(=}

(%)
wQ

_ 8V
Bxk

in view of (7-9). Thus

X, = %%: (7-13)
or

x = grad v (7-14)
which shows a striking symmetry beiween Xy and V on the one
hand and 9, and y on the other hand.

Also (7-12) is completely symmetric

V +y = X 9y o (7-15)

and permits to express one potential in terms of the other:

A s -

k




e cy—

The matrix of second gradients of ¥ ,

2
Mo = 3%y
—y 39,99,

(by (7-13)) is inverse

et L
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(7-17)

(7-18)

[ax,]
= | 1
agj

to the matrix of second gradients of V

2 g,
= °V E i
My [W—é'x—:! g [W] ; (7-19)
a3 3
cf. (2-35) and (2-36); that is,
Moo= M? (7-20)
-V -y
Now Laplace's operator
2 2 2
av = Y 2k, 2 (7-21)
3)(1 3)(2 3X3

is nothing else than the trace Tr of the matrix M, and
Laplace's equation may be written

\%

(7-22)

This gives us a possibility to find the corresponding partial

differential equation for v(gl. 9, 93)

: by combining (7-20)
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and (7-22) we get

Tr(My') = 0 (7-23)
On introducing

$oo = mta i, (7-24)

the matrix M, becomes

¥ v ¥

11 12 13
My =| ¥  ¥ao ¥p3 (7-25)
31 T3a Taa

Inverting this matrix and taking the trace gives

2 2 - P
¥11¥9, Ty2 T Tas%a; Va3 ¥ ¥41%33 %33, b .

(7-26)
which is a partial differential equation for W(gl, 9, 93) with
known coefficients (all + 1), but unfortunately a nonlinear one.
(In two dimensions, we would again get Laplace's equation for
*(9,, 9,) -)

The basic differential equation (7-26) may also be written
in the form

(Tr M,)% - Tr(uy) =0 (7-27)
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which is verified by direct calculation.

In gravity space, the vector g 1is the position vector,
the components g, serve as rectangular coordinates and gravity
g serves as radius vector. In fact, we have from (1-7)

g, = g cose cosA ,
g, = g cose sinn (7-28)
9: ~ 9 sine ,

where ¢ and A are the astronomical coordinates (for a non-
rotating earth or after removal of centrifugal effects). This shows
that g, ¢, A are nothing else than spherical polar coordinates

in gravity space. The derivative 3/3g 1is thus a radial derivative
in gravity space; we have

av _ av 9% oy 9

g 99, 39 39, g

using (7-28). Thus

Y _ QY 3
939 = % g, (7-29)

and (7-17) may be written as

V=g %% -y . (7-30)

The boundary condition in gravity space thus becomes
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(g 3% e L R V(u) , (7-31)

where the known function V(u) 1is given as a function of the
parameter (7-6) which in gravity space denotes the two angular
spherical coordinates; Sg is the image of the earth's surface in
gravity space.

For large values of the spatial radius vector

r = ixkxk = | x| (7-32)
we have
1
VeEeody) (7-33)
r
g =L voly (7-34)
r r
where
u = GM (7-35)

denotes the product of the gravitational constant G and the
earth's mass M ; we have taken the coordinate origin at the
earth's center of mass.
For r » = we have g - 0 , so that the spatial infinity
corresponds to the origin in gravity space. Solving (7-34) for 1/r ,

i |
2

1
= 29

+0(g%) (7-36)




96

and substituting this into (7-33) we get

1 3
V= u2g® +0(g%) , (7-37)

[SIE

which expresses the behavior of V as g+ 0 . Finally,

L L 3
v = - 23%¢% + 0(g%) , (7-38)

] which is verified by substitution into (7-30), taking (7-37) into
account.

We thus arrive at the following formulation of the geodetic
boundary-value problem in gravity space: to find the solution of
the partial differential equation (7-26) outside Sg with the
boundary condition (7-31) on Sg ; the earth's surface S will
then be given by (7-14):

XxoS = (gradg\l’)osg " (7-39)

where xoS denotes the position vector x restricted to the sur-
face S , that is, the position vector of any surface point,
x(2,1)

Since the direction 3/3g 1is the direction of the radius
vector in gravity space, in general different from the normal to

S ,» Wwe have an oblique-derivative problem with a known surface
Sg and a linear boundary condition (7-31), but for a nonlinear
partial differential equation (7-26).




————
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8. Linearization; Comparison to the
Standard Approach

The linearized equation (2-43) shows a striking formal
analogy with (7-17). To take a closer look at this analogy, we shall
also linearize (7-17) and other relations in gravity space.

We shall use the concept of the gravimetric telluroid
explained in sec.2: there is a one-to-one correspondence between
the points P of the earth's surface S and Q of the gravimetric
telluroid S by postulating

v, (@) =g, (P) (8-1)

that is, the normal gravity vector at Q 1is to be equal to the
actual gravity vector at P ; cf. Fig.2. .
As always in the gravity space approach, we assume the

earth as nonrotating or, which is the same, the potential is the
gravitational potential V . The normal gravitational potential
will be denoted by V . Then the disturbing potential T s

T=V-V ; (8-2)
it is the same as in the usual definition T = W - U since the
centrifugal potential cancels in the difference.

The adjoint potentials corresponding to V and V are
given by (7-12):

v(g,) = 9%, (9) -V [x (9] (8-3)

- 9.6,(9) -V [g,(9)] - (8-4) |

1

< 2
—
({a]

-
~
I
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Here we have been careful in specifying the arguments. The gravity
space for normal gravity is identified with the gravity space of
actual gravity: equal numerical values of 9, and ¥; correspond
to the same point in gravity space. It is, therefore, possible to
denote the independent variable in gravity space simply by - TR
also when the normal potential is under consideration, for instance,
in (8-4).

Equations (7-7) and (7-8) give the transformation between
ordinary space and gravity space for actual gravity. The correspon-
ding transformations, between ordinary space and gravity space, for
normal gravity are given by

«©
1]

Yi(xj) s (8'5)

= g R T (8-6)

i A

In (8-5), 9; denote the coordinates in gravity space, and yi(xj)

are the functions which express normal gravity in terms of the
coordinates x., ; the gi(gj) in (8-6) are the inverse functions

of (x.) . This will explain the notation used in (8-3) and (8-4).
Yy X
It is clear now that

x(9,) = x,(P) (8-7)
are the coordinates of the point P and

gglay) = x .14 (8-8)
are the coordinates of the point Q , in view of (8-1); for the
same reason, P and Q are mapped into the same point in gravity
space:




B ————————
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i Sl

to which both w(gi) and F(gi) in (8-3) and (8-4) refer.
Let us now calculate the difference

U BEE (8-10)

which is the gravity space equivalent of the disturbing potential
T as given by (8-2). Subtracting (8-3) and (8-4) we get

MY SR eie ) ey -
VY e le )] v s ta )] (8-11)
In agreement with (2-15) we put
Xom g kg (8-12)

(we omit the argument 9, * X, denotes the coordinates of P and
gj those of Q ). Now to V Bj(gi)] we apply Taylor's theorem:

V(xj) = V(g, + z.)

aV
V(ij) + 3;: [

k

V(g + 9.5, - (8-13)

The substitution of (8-12) and (8-13) into (8-11) gives




t(9;)

G5y - VB - gk ¥ W(E,)

=Ml = i)

or

el = = 7 [eiim ] - (8-14)
In geometrical terms, =t at Pg = Qg equals the negative of T at
Q

We have thus obtained the result that the adjoint potential
of T 1is simply the negative of T . This is certainly surprising

at first sight, and it indicates a deep relation between gravity
space and ordinary space: gravity space is not just an artifice i
introduced ad hoc , but a natural expression of the mathematical j
structure of the geodetic boundary-value problem.

This will even become more evident if we consider the
boundary condition. In view of (8-1) we have

8. & F 0y (8-15)

so that the earth's surface S and the telluroid ) are mapped
into the same surface S in gravity space. |
By (7-29), the boundary condition (7-31) becomes !

(9, %%Z - ¥)os_ = V(u) . (8-16)

The corresponding condition for the normal potential V at the
telluroid § s




The subtraction of these two equations, which are linear in V¥ and
¥ , gives by (8-10):

(9 35— = t)os_ = V(u) - V(u) . (8-18)

Now,

V(u) - V(u)

1}
=]
—
[ =
~
1
=
—~
£
~

because W refers to S and U to ] and because the difference
of the centrifugal potentials at P and at Q is negligibly small.
By (2-3) this is

V(u) - V(u) = aW . (8-19)
Furthermore <t on Sg equals - T on ) . Thus (8-18) bocomes
3T N -
-~ g 35; + T = aW , (8-20)
which is now a boundary condition on the telluroid J . The

replacement of 9, by Ty changes (8-20) only be second-order
quantities, which are to be neglected. Thus the boundary condition
on 7§ finally takes the form

7o~y 2= = Al . (8-21)




This is nothing else than (2-43) with Ag = 0 for the gravi-
metric telluroid, and with (2-44). We thus have recovered the
fundamental boundary condition of sec.2 via gravity space.

What about the differential equation which t must satisfy?
We could derive it from (7-26), but there is a much simpler way,
using (8-14). In this equation we substitute (8-5) and (8-6),
obtaining

T [Yi(xj)] = - ¥k (8-22)

Since T satisfies Laplace's equation

AT = @ (8-23)
Tt = - T will also satisfy it:
&t = @ 3 (8-24)

if t is considered as a function of PR then the Laplacian is
to be expressed in terms of ¥y ow which here are to be regarded as
curvilinear coordinates in ordinary space related to the Xy by
(8-5). It is not difficult to transform the Laplacean to curvilinear
coordinates; cf. (Hotine,1969,p.19); the important thing to note is
that it does not have the "cartesian" form:

2 2 2

B o L 5 B ‘ (8-25)
9 . 9 . 9 .
Y4 Y2 Y3

Thus, as far as the linear problem goes, the gravity space
approach simply amounts to the use of curvilinear coordinates
in ordinary space., It is, therefore, not essentially different from
the usual approach outlined in sec.2; it is even 1ess general as it

ﬂ--nﬁ-nu—-unu-n--n-—uun-u--niiE:aiiﬁiiIiin-----ln-iiilllilill‘
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supposes a nonrotating earth, The situation is quite different for
the nonlinear problem where the gravity space approach introduces
essentially new features and a considerable simplification.

Different as the ordinary approach and the use of gravity
space are, the linearized problem is the same in both methods. This
is practically important because the linearized Molodensky problem
is probably sufficient for all present applications, as we have
pointed out at the end of sec.2.

Even for the linear problem, however, the gravity space
approach provides a deeper insight into the problem; in particular,
the structure of the operator that acts on T in (2-43),

aT
5 ) ayi

&y s (8-26)

is interpreted by the relation between potential and adjoint
potential as expressed by (7-17).

Spherical Approximation.- Let us finally introduce a,
spherically symmetric normal potential; this corresponds to the

“spherical approximation" outlined in sec.2.
For a spherically symmetric mass configuration we have

<<
]
SsE
-

cf. (7-33). By a simple change of scale of length and without loss
of generality we can make u =1 , obtaining

g :
L (8-27)
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Differentiation with respect to x., gives

DY
Xi
G e ’
3 r.3
so that
1
Y e (8"28)
r_2
with
P 2 ¥
Y2 = YkYk ’ r- = kak . (8 29)

It is, therefore, possible to express the Xy in terms of v by

X, aSuse e S g (8-30)

in the case of a spherically symmetric mass configuration, cartesian
coordinates Xy and gravimetric coordinates Y; are thus related
in a simple way.

Another possibility to convert gravimetric coordinates
into cartesian coordinates, denoted by ¥, is by putting

yi = Y Yi " (8-31)

These coordinates y, can be interpreted in the following way. Let
us consider an inversion in the unit sphere r =1 ; cf. (Kellogg,
1929,p.231). This inversion transforms a point with coordinates

x, 1into a point with coordinates xi given by

PO TR————




i
105

* : LR S (8-32)

e R

r
%
the inverse transformation being
} 1
x. = —— x' with r'? = x'x’ (8-33) |
i |r‘.2 S ‘

On substituting (8-30) and comparing the result with (8-31) we see
that

§. %= K (8-34)

so that, apart from the sign, ¥, are the cartesian coordinates of

the image of the point X, under an inversion in the unit sphere.
The corresponding transformation of harmonic functions is

called a Kelvin transformation (ibid.,p.232). The basic principle

is that if U(xi) is a harmonic function of X in a domain T ,
then

V(x!) = = U(=L5) (8-35)

is a harmonic function of Xy in the domain T' into which T s
carried by the inversion.

So far, we have interpreted this transformation as a
point transformation, which transforms a point P(xi) into a point
P'(x;) , the coordinates Xy and xi' referring to the same

cartesian coordinate system. We may, however, interpret it also as

a coordinate transformation, by which the same point in space ic¢

referred to different coordinate systems Xy and x; . Then the

Kelvin transformation implies that if U(xi) satisfies Laplace’s

PP __.—-.__-_M » ' ——
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equation in "cartesian" form using Xy

S . (8-36)

then the function (8-35) satisfies Laplace's equations in cartesian

form using x'
5L

2 2
Ax'V= 2 V2 + & V2
1 1
X, X, X

2
+ 2 V2 =0 . (8-37)

3

In view of (8-34), Laplace's operator will then have cartesian form
also in coordinates ¥,

¥ =B (8-38)

The symbol Ax, Ay, etc. will be reserved for Laplace's operator
in cartesian form.

Let us now apply these considerations to the present problem.
We have seen that T(xi) satisfies Laplace's equation AxT =0
cf'. (8=23). t(yi) also satisfies Laplace's equation (8-24), but
not incartesian form (8-25). If in r(yi) we introduce new coordinates
¥y o defined by (8-31), putting

= i 2 = —
FRE PR LT Yy (8-39)
then the new function
T i
AW e o 8-40
oly,) =y y ( )
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will satisfy
A¢ =0 (8-41)
because of (8-35) with U= -T, V =4 and ¥, = = xi , since T

satisfies AXT =0
Also the function v defined by

v(y) = gy, 3 - ) (8-42)

is harmonic:

Av =0 . (8-43)

This can be easily verified by direct calculation: there is

9
2 = + e 3 8-44
AyV Ay¢ .Yi ayi Ay¢ ( )

The interpretation of v is as follows. Consider AW as given by
(8-21). (Of course, A has here nothing to do with Laplace's
operator!) It may also be 2xpressed in terms of <1 by

LY e 2 i
kg g (8-45) |

In (8-21) , AW has been considered as defined on the telluroid ) .
It may, however, also be regarded as a spatial function, defined
outside and on § , since 1 1is a function of the Ty which can

be interpreted as curvilinear coordinates in space. If now aW ,




regarded as a spatial function, is expressed in terms of Yi, we
can also transform (8-45) to these coordinates. This is best done
by transforming it first to the form

Yy instead of 9, - Now

¥

by (8-39). Therefore,
ar _ 28t @
Tov " 5y o

and (8-46) takes the form

1
AN:‘-Z-y_g_T-T
Substituting

T E ¥




according to (8-40), we get

AW

Using again

AW =

and the comp

v =

This furnish
Thes

F Y-8 . (8-53)
(7-29) with ¥, instead of g, We obtain

;mig-;: - 8) (8-54)
arison with (8-42) shows that

AW

o (8-55)
es the desired physical interpretation of v
e two auxiliary functions
. W | ¥
ek ¥ ° (8-56)
. 1 3¢ . _ AW
) = g(yiayi ¢) = Yy (8-57)

a4 s (8-58)

h
o
-

(8-59)

basic role in the next section.
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9. The Nonlinear Problem

Reformulation of the Problem.- If y 1is a solution of the
boundary-value problem defined by the differential equation (7-26)
and the boundary condition (7-31), which, in view of (7-29), may be
written in the form

i & &
9 T &= Vuw) on 8. . (9-1)

then the function

LB T (9-2)

with an arbitrary constant vector c; » is also a solution of the
problem. In fact,

25 2
B 3y N A
L N 39;99; _ agiagj =gy (9-3)

-

so that Y satisfies (7-26) if Y does, and

-~

P e = F om g o ¥ (9-4) :
k agk K agk k i

so that the boundary condition is also satisfied.

It is easily seen that the addition of the term c;9; to
¥ represents a translation by the vector ¢; 1in ordinary space:
by (7-13) we get

%, = Too " Teo t Si T Rp v g (9-5)
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We obtain a unique solution by requesting ¥ to have the form (7-38),
which places the x-coordinate system at the earth's center of mass.
This is in complete correspondence with the usual treatment of
Molodensky's problem.

However, the solution will not exist for arbitrary boundary
values V but only for those functions V(u) which satisfy n
conditions; from the discussion of the linearized problem we expect
n=3 . It is true that if we had idealized conditions, especially
absence of measuring errors, then the data function V(u) would
satisfy these conditions because the solution exists for physical
reasons. In practice, however, especially because of measuring and

interpolation errors, we cannot expect that the actual V(u) will
exactly satisfy these conditions.

This suggests a reformulation of the boundary-value problem
in gravity space along the lines of Hormander's formulation; cf.sec.6, j
especially eq. (6-11): we replace the boundary condition (9-1) by

gk e -y = V(u) + aigi on S . (9-6)

The new boundary-value problem can now be expected to have a solution
for arbitrary data functions V(u) . The three constants a,, a,, a
are determined as unknowns and, so to speak, take care of the three
conditions.

3

Transformation of the Differential Equation.- The main
difficulty in the gravity space approach lies in the differential
equation for the adjoint potential y . This equation, given by
(7-26) or (7-27), is unfortunately considerably more complicated
than Laplace's equation for the original potential V

The consideration of the spherical approximation in the
preceding section suggests, however, that it may be possible to
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reduce, at least approximately, this differential equation to
Laplace's equation.

First, in agreement with (7-38), we split off the main part
in ¥ by putting

1 3
$le.) = - 28" = alnd . (9-7)
where |
- R %

| gl mg b (9-8)
;
| This may be interpreted by (8-10) as using a spherically symmetric
| reference potential i
e
| ¥ = - 2u%g? (9-9)

in gravity space (the reader will find it best to consider all
transformations to follow as transformations in gravity space and
to forget, for the time being, about ordinary space). In contrast
to the linear treatment in the preceding section we shall not intro-
duce any approximations, so that the transformed differential
equations will be as rigorous as the original one, eq. (7-26).

The reference potential (9-9), which is spherically symmetric
in gravity space, is the adjoint potential of a potential V  that
is spherically symmetric in ordinary space. In fact, by (7-13) and
(7-15),

e e ke Qk ’ (9-10)




Eq. (8-31) suggests the substitution
(9-13)

(Now, however, the y; are to be considered as curvilinear coordi-
nates in gravity space, having no direct relation with cartesian
coordinates in ordinary space.) This transforms the reference
potential into

1
¥ e e e, (9-14)
i
eliminating the singularity 92 at the origin g =0
We now introduce the new function

b = s (9=13)

L
Yy
so that

T oye . (9-16)

If we neglected all squares and higher powers of 1t , we should
have the Tinear spherical approximation discussed in the preceding
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section since, apart from a scale factor, (9-12) is identical to
(8-27). This shows that ¢ , as a function of y , must satisfy:
a differential equation of form

H - A 5
a4 = 0(s°) {9=17)

there can be no term 0(g) on the right-hand side since Ay¢ =0
as a linear approximation, by (8-58).

In fact, Sansd has calculated the exact differential equa-
tion which ¢ must satisfy. This is done by substituting

1
v = - 2uly + yo (9-18)
into (7-27) and performing some lengthy but straightforward trans-
formations. The result is (Sans6,1977a,p.69):

1

4 2 i
Age = B (¢50) (9-19)
where Bl(¢,¢) is a quadratic operator given by
& 1 1 2 T 2 T 2
B (¢,¢) = z(0 - yo')a e + y= | (TrL)" - Tr(L") (9-20)

(it must be quadratic since the original equation (7-26) is). The
matrix L has elements

s N6 =% —;3-)¢kj {9-21)

where 6ij denotes the elements of the unit matrix and




115

2
At 4 ST "

¢' 1is defined by

i o— 9

and Ay¢ expresses the Laplace operator in the "cartesian" form

2 2
o 3%, 2%, 2%
2

; (9-23)
2 2
g Mg R,

A¢

needless to say, y; are not rigorously to be interpreted as
cartesian coordinates in ordinary space.
The boundary operator (9-1)

2y B L X
gkwl: ‘l’—gg Yy (924)

is transformed as follows. Using (9-9) we find

Gl
af = . 33 3
Pt = Bwaig s (9-25)
so that
& &
By - SR 1 &y R
g 29 y uegc + g 79 AP (9-26)
Since
1
2

y=9 (9-27)
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by (9-13), we have
Ar . 4t oy %g 231 (9-28)
In view of these relations we get
g - - v =ty oy T - {9-29)

On substituting (9-16) and taking (9-6) into account we find as
boundary condition for ¢ :

g Al e O [V(u) + aiyi] on S (9-30)

where

b
V(u) = %ﬁ%— - w2 (9-31)

is a function of the data, and
y(u) = yoSg ¥ Ru) = §io8, (9-32)

denote the values of y and ¥, calculated for that point of the
surface Sg which has the parameter u

Since the direction of 3/3y , as well as the direction of
a/3g , is the direction of the radius vector in gravity space,
we still have an oblique derivative problem as in the original
formulation given at the end of sec.7; the problem is, however,

i
|
1;
!
E




simplified because we now have a "quasilinear" differential
equation (9-19), which has a form suitable for an iterative solution.
- It is, nevertheless, appropriate to transform the problem

still further by introducing a new potential v by
1
- 3y B - 0) = LR -0 (9-33)
k

This substitution has been motivated in the preceding section; cf.
(8-57). As a linear approximation, v(yi) is harmonic and is,
furthermore, related to the potential anomaly AW

In fact, we have even rigorously

3. 14
V(g,) = ug® +yv , (9-34)
so that yv represents the perturbation in the potential V , if

expressed in gravimetric coordinates 9, in the same way as we
had

PSS

1
¥(g,) = - 2u’g® + yo , (9-35)

1 = yp representing the perturbation in the adjoint potential ¥
It is easy to verify (9-34) by substituting (9-35) into (7-30).

By means of (9-33), eq. (9-19) is finally transformed into
a differential equation for v

1
B i .
Ayv = u Bz(v,v) (9-36)




where the quadratic operator B, 1is given by

Y
B,(v.v) = - VeV = ¥ iAyvdy +

r 2 [(Tr0)? - Tr(8?)]

+ 4y [TrM.TrN - Tr(mg)] . (9-37)
M and N are 3x3 matrices with elements
* _ 3 YiYx s
_Mij % (dik T y2 )ij ' (9-38)
o . 3 YiYy
Nij o LT —_3-)kajdy . (9-39)
y o
where Gij denotes the elements of the unit matrix and
2
3V
= —— 9-40
i3 T By ey, i
v' is defined as
1 >
LS (9-41)

and A again denotes the "cartesian form" of the Laplace operator.
The solution of (9-36) has to satisfy the boundary condition

VoS =V +ay (9-42)

g i

i
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V=v(u) and y = y(u) being given by (9-31) and (9-32). This is
simply the boundary condition for a Dirichlet problem.

By means of the substitution (9-33) it has thus been
possible to transform Sansd's problem into a Dirichlet problem

for the nonlinear equation (9-36). The price to be paid is that this
equation is a nonlinear integro-differential equation, as (9-37)
shows. However, since the principal part of (9-36) is simply Laplace's
equation, the quadratic right-hand side being relatively small, our
equation is still relatively manageable (it is hardly necessary to
remind the reader that (9-36) is as rigorous as the original equation
(7-26), no neglections are involved).

This reduction to a Dirichlet problem is similar to methods
used in the linear Molodensky problem, cf. (Brovar,1964), (Krarup,
1973: the "Prague method") and the reduction the Brillouin sphere
in the present sec.4. The enormous advantage of the gravity space
approach is that the boundary condition (9-1) is linear even for the
nonlinear problem, so that methods can be used that are applicable
to the Molodensky problem only in its linearized form.

A necessary condition for the existence of the solution is

oV
L R 9-43
. (9-43)

y=0

In fact, the differentiation of (9-33) gives

2
Y = = . -
Zayi Yy 3y oy, (9-44)

If the solution ¢ is to be regular with finite second derivatives
at the origin y = /yjy = 0 , then (9-44) must tend to zero as

Y, * 0O . The condition (9-43) is to be provided for by-‘suitably
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disposing of the free constants a,, a a in the boundary condi-
tion (9-30).
If a solution v satisfying (9-43) has been found, then

¢ 1is obtained by

28773

o = = 2v(0) + ny[v()/) - V(O)] y 2y (9-45)

it is easy to verify by direct substitution that this solution
satisfies (9-33). Then the adjoint potential ¢ is given by (9-35),
and finally the earth's surface is obtained by (7-39). A check is
provided by (9-34).

Compared with the Nash-Hormander approach to the nonlinear
Molodensky problem, it is relatively simple and straightforward to
solve (9-36) by a Newton iteration scheme, considering u_l/zas a
small parameter. In this way, Sansé has obtained first results on
existence and uniqueness of the solution. He has proved that a

unique solution exists provided

v, <8 (9-46)

where the constant 6§ 1is sufficiently small. The norm is a Holder
norm very similar to the norm used in sec.6.

The condition (9-46) is directly comparable to (6-25); the
constants § will be different. It means that Vv as given by (9-31)
should be small, as well as the first and second derivatives, inclu-
ding a Holder condition on the second derivatives. Since v denotes
the deviations from a spherical symmetrical solution, this condition
is again very restrictive.
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10. Conclusions

During the recent years, the problem of existence and
uniqueness of the solution for Molodensky's problem has for the
first time been treated with adequate mathematical rigor. Certainly,
existence and uniqueness have been proved only under very restrictive
conditions on smoothness and smallness of the deviations from a
"“normal" solution, conditions which are hardly met in the actual
geodetic situation. However, these results have been obtained
rigorously.

The treatment by HOrmander uses a very advanced inverse
function theorem and is mathematically extremely complicated; it
applies to a rotating earth. The mathematical complexity is mainly
due to the fact that Molodensky's problem is a free boundary-value
problem, the boundary surface being unknown.

The gravity space approach due to Sansd transforms the free
boundary problem into a fixed one, although for a nonlinear partial
differential equation. It nevertheless reduces essentially the
mathematical complexity. The limitation of the gravity space approach
is the restriction to a nonrotating earth; practically this amounts
to the use of gravitation instead of gravity by reducing for the
effect of centrifugal force.

From this point of view, an extension of Sansé's approach
to a rotating earth by an iterative procedure (using the fact that
w 1is small) appears less urgent; at any rate it seems to be not
quite easy to prove convergence of such an iteration.

The results obtained so far by Hormander for w # 0 and
by Sanséd for w = 0 are comparable; the conditions are similarly
restrictive. It would, of course, be desirable to obtain stronger

results, for norms or even better | ||e with 0O<e<l

I,




For this purpose the gravity space approach appears to be more
promising since it is so much easier.

The impact of the gravity space approach to the theory of
Molodensky's problem appears to be enormous; it may well be compa-
rable to the impact of Hamiltonian methods to Newtonian classical
mechanics (both apply a Legendre transformation!).

From a practical point of view it is important to note that
the Tinear approximation (linear in the anomalous potential T ),
which is probably sufficient for almost all present purposes, is the
same in the usual approach and in gravity space. Therefore, the
number of the usual methods for practically solving Molodensky's
problem, such as Molodensky's series and related solutions, is not
augmented by the new developments.
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